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We study glueball masses in lattice QCD. We present the first numerical determination of the mass of the lowest spin 2 state in 
the scaling region, and find that it is close to the lowest spin 0 state. We present very precise results for the string tension and for 
the spin 0 state, obtained by analyzing a large set of operators. We find that finite size effects are significant. 

Numerical  simulations of lattice QCD allow a 
determinat ion of glueball masses. These masses are 
determined by the large-time behaviour of the con- 
nected correlation function 
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G(t )=-  ( O ( t ) . O ( O )  ) -  ( O ( t )  . ( 0 ( 0 ) )  

exp( - m t ) ,  

where O(t) is a suitable gauge mvariant  operator. The 
problem lies in the fact that G(t)  decreases rapidly, 
and is obtained as a difference of two fluctuating 
quanti t ies of comparable magnitude. This difficulty, 
already challenging in the case of the spin 0 state, 
increases in the case of higher spin states. As a con- 
sequence the determinat ion of the mass of the 2 + + 
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state is the object of a heated dispute. In this paper 
we try to solve this question, both by brute force 
(using our newly built Ape computer) and by meth- 
odological refinements - we propose a new method 
for choosing useful operators. The resutt is very sat- 
isfactory, and we succeed in measuring the mass of 
the 2 + + state, that turns out to be comparable to that 
of the 0 + +. We also give very precise estimates of the 
0 + + state mass and of the string tension, carefully 
studying the finite-size effects, and the convergence 
to the infinite-volume result. We study large lattices, 
but also small ones. We think this is the only way to 
define what a large lattice is. 

We study a pure gauge lattice SU [ 3] theory, with 
a standard Wilson action. We use a Metropolis 
updating scheme; we sweep sequentially through the 
lattice, and we try 5 updates of each link (5 hits, in 
the usual jargon). We keep the single-hit acceptance 
close to 50%. We renormalize the SU(3) matrices 
and we measure all our observables once each 20 
sweeps of the full lattice, except for the average 
energy, which is measured at every sweep. 

The results of this paper have been obtained at 
f l - 6 / g 2 =  5.9. We have chosen this value in order to 
achieve a good control on the finite size and finite- 
time effects, working as deep as we can in the scaling 
region. The subject of the scaling behaviour of our 
data will be studied in a forthcoming paper [ 1 ]. We 
work on lattices with periodic boundary conditions; 
we keep the time length of the lattices equal to 32 
(the euclidian time label t will run in the following 
from 1 to 32), and we consider spatial volumes of 
103 , 123 and 163 sites. In this way we can study finite- 
size effects with no contamination from finite-time 
effects, which should be negligible. We start from a 
fl = ov gauge field configuration, discarding at least 
1500 configurations (4000 for the 103 lattice) for 
thermalization. We have then performed 64000 iter- 
ations on the 10 3 lattice, 56000 on the 12 3 and 24000 
on the 16 3. 

This computation has been performed on a 4 unit 
Ape computer [2], a general-purpose parallel pro- 
cessor, whose design has been optimized for the solu- 
tion of homogeneous differential equations, and more 
specifically for dealing with lattice QCD. This 4 unit 
Ape is the first running prototype of the machine. It 
has a peak speed of 256 Mflops in complex arith- 
metics, and a 32 Mbyte memory. The whole Monte 

Carlo program is written in a high-level language 
which, especially designed for Ape, is cross-compiled 
on a Vax. The program updates a link in 50 ~ts (we 
estimate that with some programming effort we could 
improve the performance of our code by a signifi- 
cant factor). The results described in this paper have 
been obtained in about one month of continuous 
runs. The market cost of performing the same com- 
putation on a commercial supercomputer would have 
exceeded the entire cost of the Ape-INFN project, 
including the construction of two 4 unit Apes and a 
16 unit computer, a one Gflops machine. 

We measure the decay of correlations from a cold 
source [ 3 ] at t-- 1. This gives a stronger signal than 
in the case of operator-operator correlation func- 
tions, but also introduces a strong distortion at short 
distance from the source. We choose this method 
because it seems to be very effective on large lattices. 
Work done by using operator correlations (and the 
smearing technique we introduce below) is in prog- 
ress [4]. We construct the source by setting to the 
identity all the t=  1 links pointing in the .~ and in the 
)7 directions. With such a source we can monitor the 
behaviour of the 0 + + and the 2 + + gluonic states, and 
of the string tension. We estimate the energy of the 
system in absence of the source by averaging over 
time slices that are at least 8 lattice spacings away 
from the cold wall. We get results that are compat- 
ible for the 3 lattice sizes, that is 0.58187(6) a t  l 0  3, 

0.58182(4) at 12 a and 0.58187(3) at 163 . We have 
checked that these values are really asymptotic, in 
the sense that the mean value does not systematically 
change if we discard more time slices close to the 
source. 

As we already mentioned we consider different 
operators, that we define by using a smearing pro- 
cedure. The general point of view is the one pro- 
posed in refs. [ 3,5] that is we try to eliminate as much 
as possible the unphysical short-distance fluctua- 
tions. We use a sequence of operators 0 (s), such that 
O ~°) is the elementary space-like plaquette (the four 
links that form it are pointing in 2 of the 3 space 
directions). The operator O (s) is recursively defined 
from the operator 0 ~s-~) by applying a smearing 
procedure (see fig. 1) 

U~(n)-~Ui(n)+~ ~ ~ PTj, (1) 
~ = + I , - I  j ~ i  
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Fig. 1. The smearing procedure. We substitute a link with itself 
plus ~ times the sum of the incomplete neighboring space like 
plaquettes, and we project it back into SU(3). 

where the RHS of  (1) is projected onto the SU(3)  
group, and PTj is the oriented incomplete plaquette 
operator, product of  3 gauge matrices. It lies in the 
(i  j )  plane, excluding the link U~(n). For r/= + 1 , -  1 
Ppj has U~(n) as its left or right edge. In fig.1 we show 
this transformation. We use the analogous construc- 
tion for the Polyakov loops. 

This transformation averages the gauge fields with 
their neighbours, suppressing in this way the short- 
wavelength fluctuations in the gauge invariant sec- 
tor. To clarify the meaning of  this procedure we can 
consider the effect o f  a similar rule applied to a sca- 
lar field 

(o (~ (n ) - - .~o~s+l ) (n )=cp~) (n )+e~ '  ~ocS)(n'), 

where the sum runs over the first space-like neigh- 
bours o f  n. For large s and small e we can define a 
proper time for the smearing dynamics, z =se, so that 

O(olOz=Vz~o. (2a) 

In momentum space, the effect o f  the smearing 
operator S is the multiplication by e x p ( - z k 2 ) .  The 
same argument can be applied to our case. In the 
cont inuum limit, with proper time z=se ,  eq. (1) is 
equivalent to 

OAi/O'~ = D i Fik (2b) 

and, for gauge invariant quantities, the smearing 
operator is easily seen to correspond, neglecting the 

non-linearities of  eq. (2a),  to multiplication by 
e x p ( -  zk2). If  we assume that the wave function of  
the 0 ÷ ÷ glueball is gaussian (i.e. ocexp( - Wk2)) ,  and 
we measure the expectation value of  the smeared 
plaquette (that in the cont inuum limit corresponds 
to F } ~ k 2 ) ,  we get, for z--,oo, 

( 0  ++ IO~k~10 + + ) = ( 0  ++ IS~k~ O~o~10 ++ ) 

( W+z) -5 /2  (3) 

One can see some analogies between this method 
and the Monte Carlo Renormalization Group ideas. 
We like in our method the idea that we do not have 
to choose a priori some operators (small in practice) 
on which to perform the matching. We consider 
instead a "cont inuous" set o f  operators that become 
very large after many smearing steps. I f  we get (as 
we do) results that are independent from the oper- 
ator (at least for large smearing) we can be sure that 
these results are not influenced from a scale (the 
dimension of  the matching operator) that we have 
chosen by hand. 

We compute the values of  the glueball masses (of  
quantum numbers jP,c) m(0  ÷ + ) and m(2  ÷ ÷). We 
also compute the value of  the string tension, by mon- 
itoring the behaviour of  the Polyakov loops at large 
separation from the source. The 0 ÷ ÷ Green function 
is obtained by summing 

G ~ ' ) ( t ) - O ~ S ) ( x , y ) + O ~ ' ) ( y , z ) + O C S ) ( x , z )  , (4) 

where the plaquettes O are evaluated at time t, and 
the s indicate the different operators corresponding 
to different smearing. The source is at t =  1 in the x y  
plane. For the 2 + + state we have 

G ~ ~) ( t )  - - 2 0  (~) ( x ,y  ) + 0 ~s) (y,z) + O ~) ( x , z  ) . 

(5) 

The two gluonic channels are contaminated by a 
state of  mass 2La,  where a is the string tension and 
L is the spatial extent o f  the lattice (see ref. [ 6 ] and 
references therein for discussions about this point).  
From what is known in the current literature [7-9]  
it is clear a piori that for fl = 5.9 the situation is very 
dangerous on a 103 lattice. Indeed in this case 
2 0 a ~ m ( 0 + + ) .  The situation is analogous, if not 
worse, in the 2 + + channels. In such conditions when 
we look at the ground state in the glueball channel 
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we do not  really know what  we are observing. 
Our  data  analysis tries to use as few prejudices  as 

possible. The effective masses are a very usefull tool. 
They are def ined as the log of  the rat io of  the cor- 
relat ion function at t ime t with the one at t +  1, but  
for the correct ion o f  the hyperbol ic  cosine effect 
coming from the boundary  ( in most  of  our  da ta  this 
correct ion is negligible).  We obta in  a rel iable esti- 
mate  when the effective mass does not depend  on the 
t ime at which it is es t imated,  and on the opera tor  
used in the measurement .  We stress that  we are 
working with a very large set of  operators ,  and  that  
all the results we give here do not  depend  on the 
opera tor  we consider.  

In figs. 2a, 2b we give a typical  example  of  what  
we mean by stabil i ty of  the result. For  the 12 3 lat t ice 
we plot  the effective string tensions at different  t imes  
versus the opera tor  we consider.  The opera tor  is 
plot ted as a function o f  the inverse smear ing num- 
ber. The points  at ( s m e a r i n g ) - ~ =  1 are the ones one 
would get by consider ing the usual Polyakov loops. 
The results from G(1 ) / G ( 2 )  are strongly dependent  
on the choice of  operator .  Already at t ime 2 over  3 
the result is less dependent  on the operator ,  and at 
this scale the results o f  G(3)/G(4), G(4)/G(5), 
G(5)/G(6) and G(6)/G(7) are identical .  In fig. 2b 
we jus t  show the largest opera tors  (higher  smear-  
ing),  by magnifying fig. 2a, to evident ia te  the resid- 
ual 10% difference between t imes  G(3)/G(4) and 
G(4)/G(5). G(5)/G(6) and G(6)/G(7) coincide 
with G(4)/G(5), but with a larger stat ist ical  uncer- 
tainty. The crossing of  two different  curves for oper-  
ators with s ~  l0  can be in terpre ted  as a change of  
sign o f  the coefficient of  the first excited state. This 
in terpre ta t ion  is conf i rmed by a two-state fit o f  the 
t dependence  at different  smearing,  and offers a pos- 
sible way to es t imate  the mass o f  the lowest state by 
using the point  where two curves at different  eucli- 
d ian t ime cross (effective mass versus the smear ing 
number ) .  That  will be a poin t  in which the effect o f  
the first excited state is very suppressed. We have 
verif ied that  such an est imate,  given for example  by 
using the crossing of  G(2)/G(3) versus G(3)/G(4), 
which can be de te rmined  accurately,  is systemati-  
cally lower by 5% than the inf ini te- t ime plateau. 

We also use s tandard  fit t ing routines.  Our  da ta  are 
good enough to allow precise fits, which use the 
informat ion  coming from very large eucl idian t imes 
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Fig. 2. The effective string tension as a function of the smearing. 
(a) At (smearing) ~= 1, starting from the top, we have the curve 
(1) derived from G(1)/G(2), next curve (2) is the one from 
G(2)/G(3). The curves (3) for G(3)/G(4), G(4)/G(5) and 
G(5)/G(6) are undistinguishable on this scale. (b) On a large 
scale one can see the effect obtained when going from G( 3 )/G(4) 
to G(4)/G(5) (respectively curves 3 and 4). The effective masses 
at higher times would coincide with G( 4)/G( 5 ). 

(up to a dis tance of  order  10). We have found that  
the best  approach  was to use the simplest  fit 
(G~Aexp(-rnt), with a single mass) ,  discarding 
enough points  close to the origin. This approach 
works, and  we obta in  f i t ted results which are inde- 
pendent  from the opera tor  and from the lowest t ime 
used in the fit. We have also per formed two-mass fits 
including all points  but  one. The value o f  the low 
mass obta ined  in these fits agrees with that  obta ined  
in the s impler  fits. The value o f  the high mass fluc- 
tuates too much when we d iv ide  our  da ta  in inde- 
pendent  subsamples,  and cannot  be considered 
meaningful .  

166 



Volume 192, number 1,2 PHYSICS LETTERS B 25 June 1987 

The last note about  the analysis is that  one can try 
to use results such as the one ob ta ined  in eq. (3)  in 
order  to get, for example,  informat ions  about  the 
shape of  the wave function. The results of  the global 
fits are compat ib le  with those from the fits descr ibed 
above. 

Quoting our numerical  results we will always quote 
what  we judge to be true errors, evaluated over  
uncorrela ted measurements .  This is true both for 
effective masses and mass ratios, and for the results 
of  fits done by using s tandard  min imiza t ion  pro- 
grams. In the case of  f i t ted results, due to the high 
non-l ineari ty  of  the observables,  we never trust  the 
s tandard  error  given by the fi t t ing routine,  but  we 
always repeat  the fit over  n independent  subsamples,  
and take as s tandard  error  the dispers ion over  the 
results of  different  fits. As central  value we quote the 
result o f  the single fit per formed over  the whole sta- 
tistical sample. For  the 103 latt ice we consider  five 
subsamples o f  12000 consecutive i terat ions each, for 
123 seven groups o f  8000 iterations,  and for 163 six 
groups of  4000 iterations.  

We now present  our  results. We start  f rom the 0 ÷ ÷ 
gluonic state. For  the 1 0  3 latt ice we est imate from 
the effective masses 

m ( 0  ÷÷ , L =  1 0 ) = 0 . 6 5 ( 3 ) .  (6)  

A one-mass fit with tm~n = 4 gives a slightly higher 
result, independent  from the operator ,  but  with a 
larger statist ical  error. On the 122 latt ice from the 
effective masses we get 

m ( 0 + + ,  L =  12) = 0 . 7 6 ( 4 ) .  (7)  

A one-mass fit with tmin = 4 gives a very accurate 
result (with a mass that  turns out  to be independent  
from the opera tor )  of  0 .75(5) .  In fig. 3 we plot  the 
result of  the fit versus the opera tor  we have used in 
the fit. In this case, like in all the other  ones, a two- 
mass fit is not very useful. 

For  the 163 latt ice we get from the effective masses 

m ( 0  + + , L =  16) = 0 . 8 2 ( 5 ) .  (8)  

The same fit we used for 123 gives a very nice, 
opera tor - independent  result, with a slightly higher 
error, 0.83 (7) .  The results seem to exhibit  a possible 
residual finite-size effect of  an order  of  5%, between 
L = 12 and L = 16. We will discuss later  the physical  
meaning o f  such results. 
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Fig. 3. Result of a fit for the 0 + + mass. 123 lattice, /m~n=4. 

The ampli tudes one gets from the one-mass fits are 
very reasonable, and qualitatively consistent with the 
behaviour  predic ted  in eq. (3) ,  and  with the global 
fits, in which we were using as inputs all the operators. 

For  the 2-- + state we f ind useful results up to t = 4 .  
The signal on the fifth t ime slice is a lready too noisy 
to be really usefull. The results obta ined  on the 103 
latt ice have a shape that  is different  from the other  
two latt ice sizes. This is not  a surprise as we know 
from the larger lattices that  m(2  ÷÷)  is close to 
m ( 0  + + ). In this c i rcumstance we expect a large con- 
t amina t ion  from the string tension, which on a 16 3 

latt ice corresponds to a state o f 2 L a  ,~ 1.0. I f  we want  
to read a mass from the 103 latt ice we have to quote,  
from the crossing o f  G ( 2 ) / G ( 3 )  and G ( 3 ) / G ( 4 )  that  
m(2  ÷+, L =  10) = 0 . 6 ( 3 ) .  For  the 123 and 163 latt ice 
we get a nicer signal from G(3)/G(4). The result is 
still dependent  on the opera tor  we choose, but  from 
the crossing of  G(2)/G(3) and G(3)/G(4) we get 

m(2  + +, L =  12) = 0 .80(20) ,  

m ( 2 + + ,  L =  16) = 1 .00(15) .  (9)  

We est imate that  the systematic  error  o f  these 
results is by far smaller  than the statist ical  error  
(previous  considerat ions  on the 0 + + glueball may  
suggest a systematic posi t ive shift of  0.05).  I f  we 
average the Green functions over  the 12 3 and the 16 3 

latt ices we f ind 

m ( 2  ++,  L =  12 and 16) = 0 . 8 5 ( 1 2 ) .  (lO) 

In this case we also have a signal for G(4)/G(5) 
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Table 1 
The observables we have considered versus the lattice size. 
m(0 + +) /x / 'b~  is computed directly from an effective ratio. 
tr(~ ) =-tr( L ) + g/( 3L2). 

L m(0 ++) m(2 ++) a(~)  m(0 ++) 

10 0.65(3) 0.6(3) ~ 0.058(3) 3.0(2) 
12 0.76(4) 0.8(2) S 0.062(1) 3.2(2) 
16 0.82(5) 1.00(15) 0.85(12) 0.058(2) 3.4(4) 

for large operators, consistent with the previous esti- 
mate. That  makes our claim about the systematic 
error stronger. 

The string tension is measured very precisely. The 
results are given in table 1, together with the ones for 
the glueball states. In this case a very clear operator 
and time independence gives a result compatible with 
the one coming from the fit, and with that coming 
from the crossing point. 

Our data are in reasonable agreement with a 
n/ (3L  2) [10,8] contribution to the string tension, 
coming from the gaussian string. The difference in 
the value o f  the string tension we would expect 
between 123 and 163, due to the n/3, would be 0.003. 
We have a difference o f  0.001 in the wrong direction, 
but with an error o f  0.002. Instead the deviation of  
the a measured on the 10 3 lattice from the asymp- 
totic value can be explained by such an effect (we do 
agree with the numerical result obtained in ref. [ 8] 
on the 103 lattice at the same fl). I f  we include the 
n/3 we get (in the following we assume x / ~ =  
420 MeV) 

a -~ = 1700(50) M e V ,  (11 ) 

that would be raised by 100 MeV neglecting the ~/3 
term. This is equivalent to 

AL/, , f~= 10.7(2) × 10 -3 (12) 

a value that is 10% higher than that obtained in ref. 
[ 7 ] from the asymptotic behaviour o f  large Wilson 
loops at fl = 6.2. 

We have also measured directly m (0  + + ) / , ~ .  We 
give these results in table t. At the 10% level we are 
not able to exhibit any statistically significant lattice 
dependence o f  this ratio. We thus agree with the result 
obtained with a different action in ref. [ 11 ], and our 
0 ++ glueball has a mass of  1400(100) MeV. 

The main result of  this paper is that the 2 + + state 
has a low mass, with a ratio m(2++)/m(O++) of  
order one (with an error o f  order 20%). This is a rea- 
sonable result, in general agreement with what we 
usually learn about spin forces for quarks. With our 
statistics we cannot say which state is the lighter one 
(we have indications, if any, for the 0 + + being lighter 
then the 2 + + ), but the point of  view assumed in ref. 
[4].  seems to lead to a roughly correct picture. This 
finding is in contrast with the claims of  ref. [ 12], 
asserting asymptotic scaling o f  the 2 ++ state with 
m(Z++) /m(O++)~3 .  

Our result for the 0 ++ mass on the 103 lattice 
agrees with the one given in ref. [ 9 ]. On the contrary 
the results on larger lattices are very different from 
the result o f  extrapolating from the 103 lattice by 
means o f  the small volume results [ 13 ] ; the dimen- 
sionless three-glueball coupling estimated in (7) was 
already very high ( i.e. O ( 102 )). The same procedure 
applied to our data would give a three-glueball cou- 
pling o f  the order o f  103, but for such large couplings 
the inclusion of  multiple exchanges cannot be 
avoided. We rather believe that the finite-volume 
effects on the glueball masses originate from the 
mixing with states of  mass 2La [ 14 ]. 
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out the crucial contributions given to the Ape project 
from A. Fucci, S. Galeotti, A. Miotto, D. Pascoli, D. 
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precious contributions given to us, at various stages 
of  our work, from C. Giovannella, A. Frighi, M. 
Matone, F. Pagani, P. Rossi, B. Tirozzi, G.M. 
Todesco. We especially thank F. Cesaroni and the 
whole electronics workshop in Roma. We have 
received a wonderful support from the Dipart imento 
di Fisica of  Universita di Roma "La Sapienza" and 
we warmly thank its director R. Bizarri. The logistic, 
organizative, administrative and technical help and 
support we have received have been so intense that 
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