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The APE computer is a high performance processor designed to provide massive computational power for intrinsically
parallel and homogeneous applications. APE is a linear array of processing elements and memory boards that execute in
parallel in SIMD mode under the control of a CERN /SLAC 3081 /E. Processing elements and memory boards are connected
by a ‘circular’ switchnet. The hardware and software architecture of APE, as well as its implementation are discussed in this

paper. Some physics results obtained in the simulation of lattice gauge theories are also presented.

1. Introduction

APE (Array Processor with Emulator) is a high
performance computer designed to provide mas-
sive number-crunching capabilities for applica-
tions that are intrinsically parallel and homoge-
neous. So far, APE has been used for lattice gauge
theory (LGT) simulations.

The full scale machine consists of a linear array
of 16 cells, each consisting of a floating point
processor and a memory-board. Floating point
processors and memories are connected through a
‘circular’ switchnet. The number of cells is in
principle arbitrary and can eventually be enlarged.
The array runs in SIMD (Single Instruction Multi-
ple Data) mode under the control of a
CERN /SLAC 3081 /E (the Controller), integrated
in a general purpose host environment (presently a
VAX/VMS system).

The theoretical speed of the machine is 1 Gflops
while the total memory size is 256 Mbytes.

As an example of performance, a prototype
consisting of 4 cells updates one link in an SU(3)
pure gauge theory in 40 ps, running a program
written in a high-level specially developed lan-
guage. The efficiency for such a program, whose
source code is larger than 1500 lines, is 70% of the
theoretical speed. This figure can be compared
with 35 ps obtained on a CRAY-XMP1 code in
which the most time consuming routines were
written in assembly language.

APE can efficiently perform many primitive
computations such as matrix manipulation, fast
Fourier transform, multidimensional convolution
and, in general, algorithms that can be parallelized
while requiring extensive communication among
the processing elements.

While achieving a high throughput, typical of
special-purpose processors, APE has a high degree
of programmability. A high level FORTRAN:-like
language has been developed to take full ad-
vantage of the features of the machine. Although
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the user must keep in mind the parallel structure
of the machine while writing application pro-
grams, no deep understanding of the structure of
APE is required to achieve good efficiency. An
optimizing step is in fact included in the APE
compiler.

Two prototypes consisting of 4 cells each have
been fully developed and are operational since
september 1986. They have been used for SU(3)
LGT simulations. Production of the full scale
machine is underway (partially contracted to in-
dustrial firms). A full scale operational prototype
is expected for spring 1987.

This paper describes the hardware and software
architecture of APE and its implementation. We
first give an overview of the machine and then
give a more detailed description of the hardware
structure of APE. Software aspects are then con-
sidered while some physics results and concluding
remarks are presented in the last section.

2. Overview
APE, as shown in fig. 1, is a linear array of

SIMD processors. A linear array is easy to imple-
ment, and can be expanded to larger size in a
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Fig. 1. Block diagram of the APE computer.

straightforward way. Furthermore a more complex
structure (e.g. a planar array) can be efficiently
simulated on a linear array, the reverse being not
always true.

A SIMD architecture is simple from the point
of view of implementation, since it requires only
one sequencing unit, which controls all the
processing elements via a broadcast micro-code. It
also has conceptual simplicity, in that all problems
of synchronization between processors are avoided.

The range of problems that can be solved on a
SIMD machine clearly depends on the communi-
cation capabilities of the switchnet. As far as LGT
simulation is concerned communication between
first neighbor processors is adequate. This solu-
tion would however over-specialize our SIMD
machine, preventing its use in even moderately
non-local problems.

These considerations lead us to consider a ‘cir-
cular’ switchnet, capable of connecting in a ‘rigid’
way each FPU to each memory. Specifically the
switchnet can establish a bi-directional data-flow
between FPU(k) and memory(k + /), 0 < k,1 < 15,
periodic boundary conditions being used to wrap
around the edge of the array.

This structure is adequate to handle non-local
problems, provided that they can be solved by
parallel algorithms. Still it is relatively simple and
requires a limited number of control signals. Its
simplicity can be exploited to attain a speed suffi-
cient to sustain the peak performance of the
processing elements. APE is supported by a spe-
cially developed software. The APE software is
essentially a two level package, designed to adress
two main issues. At the user level, a FORTRAN-
like language naturally reflects the parallel struc-
ture of the machine. At a level closer to the
hardware architecture of the machine, maximiza-
tion of the performance of the pipelines of the
machine is the key issue. This fact has favoured
the decision to build a fully microcoded machine,
completely avoiding any assembly-language level
of programming. From the point of view of the
high level user, APE is controlled by a host com-
puter (currently a VAX). The Host resident APE
Kernel Software (Hack) provides a VMS environ-
ment for the high level user. Hack consists of the
APE compiler, the symbolic I/0O manager, the
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Debugger, the Program Loader and the Backup
software.

3. Hardware

The APE computer has 4 elements: an array of
16 ‘cells’, a switchnet, a sequencer and a controller
running synchronously with a clock cycle of 120
ns.

Each cell comprises one Floating Point Unit
(FPU) and one memory board. The switchnet
provides a data-path between memories and
FPU’s. The connection is usually between the
FPU and memory belonging to the same cell, but
the data-path can be re-directed under program

control to bi-directionally connect FPU’s and
memories of different cells. A sequencer broad-
casts the same microcode (labelled nano-code in
APE jargon) to all the FPU’s. Nano-code se-
quences are stored in the (writable) sequencer
memory and are broadcast to the FPU’s under
control of the sequencer itself.

The controller executes the integer-arithmetic
and logic sections of the application program that
are not mapped on the FPU’s. It also generates
appropriately sinchronized addresses and controls
for the memory banks and the switchnet. Finally
it controls the logic flow of the FPU program
supplying branch adresses to the sequencer. The
controller is connected to a VME bus via dedi-
cated boards. The VME QBUS /UNIBUS connec-
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Fig. 2. Block diagram of the data-path of the Floating Point Unit of APE.
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tion is finally accomplished through a dedicated
interface. These hardware items are now described
in more detail.

3.1. FPU

The Floating Point Unit is the processing ele-
ment of the elementary APE cell. It has been
designed to efficiently operate on complex floating
point numbers with 32 bit accuracy. The floating
point format conforms to the IEEE standard. A
block diagram is presented in fig. 2. Communica-
tion to/from the memory is accomplished through
two complex register files (each containing 32
registers). These are implemented with 4 Weitek
WTL1066 register file chips, connected to the
memory port through their bi-directional ports.

The FPU is optimized to perform the operation

A=B*C+D. (1)

A, B, C, D being complex numbers. The FPU uses
four floating point multipliers and four floating
point ALU’s, respectively Weitek WTL1032 and
WTL1033 chips. They can start a new operation
every clock cycle in pipeline mode, with a latency
of 5 cycles. A suitable configuration of these de-
vices is capable of obtaining a new result of oper-
ation (1) every clock cycle, after pipeline startup.
Such a configuration is shown in fig. 3. The process
of computing eq. (1) can be logically split in three
steps. All products of the four real numbers in
B = (b,, b,) and C = (c,, c,) are evaluated in step
1. The complex number B*C = (b,c; — b,cy, bic,
+ b,c;) is evaluated in step 2 by appropriately
adding /subtracting the result of step 1. Finally
B*C and D are accumulated onto A in step 3 and
the result is saved onto any of the two register files
for later use or transmission to the memory. The
latency of the full operation is 18 cycle.

The data-path can be re-arranged for greater
flexibility on a cycle by cycle basis. For instance
pure real arithmetic can be performed efficiently
using the real and imaginary parts of each data
word as two independent real numbers.

Special hardware is used to implement
IF...THEN...ELSE structures supported by the
APE language. On our SIMD machine IF struc-
tures can be implemented at a local and global

Register Files
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Fig. 3. Simplified diagram of the data-path of the Floating
Point Unit of APE, showing the pipeline structure optimizing
the evaluation of complex scalar products.

level. At the local level writing of data onto mem-
ory is performed or inhibited in each cell accord-
ing the value of the condition code generated on
the cell itself by the (local) IF instruction. The
local IF structure cannot alter the logical flow of
the program. The latter can be modified by the
global IF instruction also implemented in hard-
ware. In this mode, the logical AND of the local
condition codes is passed to the controller which
will act consequently. In both cases four levels of
nesting are hardwired.

Heavily used special functions like exp and log
are evaluated in the FPU’s using a first approxi-
mation provided by hardwired logic. This is also
true for the sqrt and inverse functions, with the
help of an 8 bit look-up table built in the register
files.
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3.2. Memory

Typical LGT applications require a large data
base (our long standing goal is a memory size of 1
Gbytes). This requirement dictates the use of
dynamical memory. On the other hand there is a
requirement of a large memory band-width, suffi-
cient to keep the FPU’s busy. As an example, the
calculation of Tr(A*B*CxD), A B C and D
being SU(3) matrices (a typical kernel of LGT
codes) requires about 200 floating point oper-
ations on 24 complex numbers (or 200 bytes).
Hence a band-width of 8 bytes per cycle is
required. The conflicting requirements of large
size and high band-width are met by organizing
the memory in 8 interleaved banks, accessed in
sequence. Memory access time is one word every
three clock cycles for sparse access.

Higher speed is achieved in FAST mode. In
this mode a block of memory up to 32 kbytes can
be transferred at a rate of one word (8 bytes) per
cycle after a start-up of 3 cycles. The 64 bit wide
word is organized as 2 banks of 32 bits each.
Seven check bits are used for each half-word to
provide single error correction and double error
detection, adding to the reliability.

8 Mbyte boards have been built using standard
256 kbit DRAM chips. The two working APE
prototypes use such boards. The final version will
use SIP packaging of 256 kbit chips to squeeze 16
Mbytes of memory into one board, giving a total
memory of 256 Mbytes. This figure will be
expanded to 1 Gbytes when denser chips are
available at reasonable prices.

Each memory board can be accessed by the
controller and the FPU on independent busses,
addressing and control being provided by the con-
troller in both cases. A common bus is shared by
all memories for communication with the con-
troller, while separate busses connect each mem-
ory to an FPU via the switchnet. Either a data
transfer between one of the memories and the
controller is active or a parallel transfer between
each memory and the connected FPU is in pro-
gress at each clock cycle.

3.3. Switchnet

The switchnet provides a re-configurable data-

path connecting FPU’s and memories.
As already mentioned, the switchnet can connect
FPU(k) and memory[mod(k +j, 16)] 0 <k, j<
16. The offset j is specified by an appropriate
number of bits in the memory address.

The switchnet is a separate board housed be-
tween the crate containing the memories and the
FPU crate. Flat cables ensure electrical continuity.
Physically each data-path is 32 bits wide. The
transfer rate is 1 64-bit word per clock cycle,
multiplexed as 2 half words of 32 bits each.

Two prototypes connecting the FPU’s and
memories of 4 cells have been built using wire-wrap
technology. Extensive use of programmable logic
(PALs) has been made. The switchnet is trans-
parent, in that the transfer time of one data word
through the switchnet is shorter than 1 clock cycle.

The full scale version will follow a pipelined
scheme. The transfer of 1 data word will take one
full clock cycle. This brings the effective pipeline
latency of the memory from 3 to 4 cycles, negligi-
bly affecting the overall performance of the sys-
tem. This choice has been made to ensure ap-
propriate reliability to a device expected to deliver
a band-width of 1 Gbyte/s and to have sufficient
design margins to allow experimentation of more
complex switchnet architecture in the future.

Using off-the-shelf components for the switch-
net would result in an oversized board of high
power consumption. To overcome these problems,
we have designed a semicustom chip based on 2
pm CMOS gate array technology. This device,
built by Plessey Ltd., connects one bit in the
data-path across the sixteen FPU’s and memories.
Pipeline flip-flops are contained inside the chip.
The switchnet requires 32 such chips, packaged in
standard 40 pin DIP’s. A prototype of the board is
being tested at present.

3.4. Sequencer

The APE computer has one dedicated se-
quencer board, broadcasting the same nano-code
to all the FPU’s on a dedicated bus. The nano-
code, controlling the cycle by cycle status of the
machine, is 64 bits wide.



350 P. Paolucci et al. / The APE computer

APE is a microcoded machine, completely by-
passing any assembly language level of control. As
a consequence, the size of the control store is
large, nano-code sequences being usually very long
(typically of order of 100-500 machine cycles). At
present, the size of the writable control store of
the APE sequencer is 16 Kwords of 96 bits each,
to be expanded to 64 kwords in the near future. A
64 bit pattern is broadcasted to the FPU’s, while
32 bits are used within the sequencer to control
the flow of the nano-code stream. Sequencing is
accomplished using a standard architecture based
on the AMD-2909 psequencer chips. Four
AMD?2909 are used to provide 16 bit addressing.
The writable control store uses static CMOS RAM
chips (16 k X 1 bit, to be replaced by 64 k X 1 bit)
with access time of 45 ns. Parity bits are also
stored (on a byte basis) and are checked at every
clock cycle.

3.5. The controller

The controller performs all integer arithmetic
and logical operations that are not mapped onto
the FPU array. It also controls the operation of
the FPU’s through the sequencer and generates
addresses for the memories and controls for the
switchnet.

The controller is based on a CERN/SLAC
3081 /E processor, described in details elsewhere
[1]. This processor is well suited as the APE con-
troller, since it is a synchronous machine with a
clock period of 120 ns, well matching the FPU
clock. It also has integer processing power ade-
quate to fulfill the addressing requirements of the
memory array. Finally, the 3081 /E is interfaced
to the VME bus via dedicated boards.

3.6. Host interface hardware

The host system of the APE machine is a
VAX/VMS computer. The connection is done in
two steps. First, the 3081 /E is interfaced to the
VME bus via dedicated boards. Programs running
on a VME CPU (at present a Data Sud CPUA-1)
control the 3081/E at the hardware level. Com-
munication between VME and the VAX is accom-
plished via a specially developed VME-QBUS/

UNIBUS controller, having a peak transfer rate of
500 kbytes/s. The main advantage of this config-
uration is that of keeping the user level and the
hardware level well separated, allowing a relatively
easy migration to different host systems. In fact,
we are considering at present the possibility of
using a VME system running UNIX as the host of
APE.

The current APE implementation uses con-
servative design principles. TTL-compatible parts
are used throughout and no custom-made compo-
nents are used. Custom components have been
developed and will be used in the switchnet for
the full scale machine however. Fig. 4 is a picture
of one 4 cells APE prototype. A single 19" rack
houses the 3081/E the memory banks and the
FPU array. The two first prototypes use wire wrap
technology. The full scale prototype is being built
using PC cards.

Fig. 4. Picture of the APE prototype #2.
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4. Software

High level users can fully control APE capabili-
ties while logged onto the host computer.

A typical APE working session can be de-
scribed as follows:
The user logs onto the host computer and edits an
APE language source program. He then invokes
the APE language compiler to obtain an APE
executable file and subsequently loads the execu-
table code on APE, runs and debugs it, examines
computed results and backups them using Hack:
the Host resident APE Control Kernel.

4.1. The APE language and its compiler

APE language is a structured language quite
similar to Fortran, even though it faithfully re-
flects the APE SIMD architecture.

The flow control is managed by language instruc-
tions directed to the controller: a branch is gener-
ated if data on the controller or cells satisfy the
programmed condition.

Control statements are divided into two classes:
The first group consists of:

— if(condition)then...else...endif,

— for...endfor,

~ repeat...until(condition),

~ while(condition) endwhile.

These statements are used when the tested data
reside on the controller memory: typically an ad-
dress or loop counter.

The second group refers to parallel processing:

~ where(condition). .. endwhere,

— ifall(condition)then. .. elseall. . . endifall,

- repeatall ... untilall(condition),

— whileall(condition). .. endwhile.

The “where(condition)...endwhere” executes the
nested instruction block only on the FPUs where
data satisfy the required condition.

Using control statements such as “ifall(condi-
tion)then...endifall”, the condition must be re-
ferred to data residing on FPUs. The global condi-
tion will be statisied only if it is true on all cells.

Data storage is allocated by explicit declaration
of “integer” (32 bits), “real” (32 bits) or “com-
plex” (32 + 32 bits) variables and multi-dimen-
sional arrays.

However the instruction set allows closer con-
trol on data storage. When scalar variables are
declared, data storage may be forced by specifiers:
— register: data will reside on registers (FPUs or

controller).

— static: data will reside on memories (cells or

controller).

Arrays of FPU registers may be declared: they are
named “fast” arrays because a DMA is performed
when loading or storing them. “fast in” and “fast
out” statements permit data transfer between static
and “fast” arrays. When needed the “alloca-
te...endallocate” statements actually allocate
controller registers for local variables.

The compiler automatically optimizes se-
quencer code by rearranging it. A good APE pro-
gramming experience will improve code efficiency,
relieving part of the burden of the optimizing step
of the compiler. An expert APE programmer will
minimize controller branches during inner loops
to reduce pipeline breaking. He/she will obtain
maximum performance using, as much as possible,
controller and FPUs register variables and “fast”
arrays when vector processing is required. Source
optimization is facilitated by optimization sym-
bolic data produced by the compiler. These tables
allow easy identification of time critical source
segments.

A preprocessor supporting macro expansion,
token definition and source text inclusion is avail-
able. Its performance is comparable to that of a C
language-preprocessor, while APE oriented im-
provements are implemented.

The compiler saves the symbols tables for the
symbolic Hack debugger. Time synchronization
between controller and sequencer micro-codes is
performed by a time-linker.

4.2. The system software

The structure of the system software of APE

present two levels (fig. 5)

— Hack is the higher level software running on the
host computer.

— The lower level Ac&Bc (APE software Chan-
nel & Backup software Channel) is hardware
dependent. It runs distributed over the APE &
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Fig. 5. The system software of APE.

host communication channel and over the APE
© backup environment.
Hack comprises the symbolic debugger, the pro-
gram loading and backup facilities and is cur-
rently implemented on Vax-Vms. It is totally Vax
C wrritten and we plan to develop a Unix-Hack
version.

The user interactive interface is provided by the
Hack command interpreter supporting the Hack
command language. The user can also easily in-
corporate calls to Hack routines in host programs.
For instance a Vax-Fortran or Vax-Dcl program
can call Hack’s routines to run a program on APE
and wait for APE run completion, and symboli-
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cally access APE data for further use.

The symbolic debugger can access variables
and arrays either by name or by address. It can
also start programs at given labels. Comparison of
symbolically selected data on APE memories and
corresponding data in backup save-sets is also
possible.

Monitoring and machine status display routines
are also available. The Hack command language is
easily extendable, as new features are needed.

APE is network accessible, since Hack is in-
tegrated in the host computer environment.

Hack is independent of the channels’ hardware
as it works calling the lower level Ac&Bc.

Ac routines make it possible to consider APE
as divided into devices directly addressable for
read and write operations. These devices are:

— sequencer (program) memory,

— controller program memory,

— controller data memory,

— cells’ memories,

~ machine status and control space.

Ac allows monitoring, starting and stopping of
APE by reading and writing status registers and
control space locations of the machine.

APE backups are structured by a similar archi-
tecture and are managed by Bc. This similarity
allows Hack to access data resident on APE or on
backup save sets in the same fashion.

Hack commands reconfigure Ac&Bc calls to
match the actual APE hardware configuration
when memory size and number of cells vary.

5. Physics applications and conclusions

The four cell prototypes have been used since
september 1986 to perform lattice simulations of
pure gauge systems. In particular, the glueball
spectrum has been analysed, yielding results for
the masses of the 0** and 2*™ states, published

elsewhere [3]). The typical source code used in the
simulation is about 1500 lines long, while the size
of the executable codes is 180 Kbytes (or 11
Kwords). The time required to update one link is
40 psec. This corresponds to an average speed of
70% of the theoretical peak speed. Simulations
have been performed on lattices of size 10> * 32,
123432 and 16> %32, the last lattice size almost
saturating the present memory size of 32 Mbytes.
More than 20000 lattice iterations have been per-

-formed in the three cases. This has required a total

CPU time of about 450 hours. For comparison, a
similar calculation would require about 500 CPU
hours on a CRAY 1XMP supercomputer.

Overall system reliability has been very high.
No system crashes have ever occurred during pro-
duction runs that have lasted about 20 days.

In summary, a special purpose processor has
been built and is being used for theoretical physics
simulation, while application in other fields (e.g.
signal processing) are being considered.

Performance of the system is comparable to
that obtainable on state of the art supercomputers,
for the specific application for which APE has
been conceived, while development costs are
roughly one order of magnitude lower than the tag
price of a supercomputer.

Key features of the machine are the develop-
ment of an optimized (but not over-specialized)
architecture, the use of recently made available
floating point chips and, possibly most important,
the development of a high-level programming en-
vironment reflecting the structure of the machine
in an user friendly fashion.
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