

THE DOUBLE-POLARIZED DD-FUSION EXPERIMENT + DETECTOR SYSTEM

P. Kravtsov

for the PolFusion collaboration

The experiment goal

Investigation of 4-nucleons reaction with polarization of the both initial particles at 10-100 keV energy (center of mass).

The Quintet suppression factor

Financial support: RSF (2014-2016)

The layout of the experiment

Polarized ion source (POLIS)

POLIS

- ✓ Ion current at the source up to 20uA
- Magnets power supplies
- Vacuum system problems
- Unstable beam
- New ionizer for energy up to 100keV

Polarized atomic beam source (ABS)

Ferrara ABS

✓ Dissociator upgrade
✓ Nozzle cooling
✓ Control system
✓ Vacuum system
❑ RF transition units

ABS. Dissociator upgrade

- New schematic for better matching with generator
- Geometry optimization of RF circuit
- Reflected power decreased from 150W to 3W (@250W)
- Two-channel RF matchbox with splitter to feed both dissociators from single generator

Polarimetry. LSP ionizer

Polarimetry. LSP Na cell

Polarimetry. Deflector for NRP

КУР национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ» петербургский институт ядерной физики

Препринт 2996

Е. Н. Комаров, С. Г. Шерман

РАЗЛОЖЕНИЕ ПО ПАРАМЕТРАМ ПОЛЯРИЗАЦИИ ПУЧКА И МИШЕНИ ДИФФЕРЕНЦИАЛЬНОГО СЕЧЕНИЯ И ПОЛЯРИЗАЦИИ ВТОРИЧНЫХ ЧАСТИЦ В РЕАКЦИЯХ $d + d \rightarrow {}^{s}\text{He} + n, d + d \rightarrow {}^{s}\text{H} + p$ The observables in the d+d ->³He+n and d+d->³H+p reactions with polarized deuterons

2016

P. Kravtsov

Detector system. PIN diodes version.

- $4-\pi$ detector with 51% filling
- 576 Hamamatsu PIN-diodes (S3590-09)
- PIN-diode active area: 1 cm²
- depleted layer: 300 um
- energy resolution: <50keV
- low reverse voltage (<=50V)

Square detector elements (4x4 diodes) Standard PCB assembly with spring through-hole mounting (no solder!)

Simulation of the detector system

Alpha-source: $^{239}Pu + ^{240}Pu = 80.4\%$ $^{238}Pu + ^{241}Am = 19.6\%$ $^{234}U + ^{235}U + ^{238}U$

²⁴¹Am

03.02.2017

P. Kravtsov

PIN diode test measurements

✓ Dead layer thickness measurement (D≤1µm)
P. Monich. Bachelor thesis (ITMO university).
✓ Active area uniformity tests
Inhomogeneity <0.5% for the whole active area
✓ Hydrogen vacuum performance
Better 0.16% stability at hydrogen
pressure of 10⁻⁴ mbar.
Expected vacuum in the experiment 10⁻⁵÷10⁻⁶ mbar.

Detector system assembly

Readout electronics

- Readout requirements:
- 600 channels
- □ Total count rate ≤ 1kHz
- Standard interface (Ethernet?)
- Event synchronization for coincidence trigger

CSP from ATLAS CSC [BNL]

Junnarkar et al. IEEE Nuclear Science Symposium Conference Record (2005)

Readout signal processing

P. Kravtsov

Energy resolution

Solid target experiment

Target: deuterated polymethylmethacrylate Deuteron beam 15keV ~5uA

03.02.2017

P. Kravtsov

Full scale readout electronics (ASF-48)

Optimizations (grounding, pickups...)

ASF48 test software

- Full scale DAQ software based on MIDAS (Maximum Integrated Data Acquisition System) http://midas.psi.ch
 - Flexible distributed DAQ system
 - Web interface for run control and monitoring
 - Data transfer / logging capability
 - Online data monitoring
 - Online database
 - Message logging
 - Alarms

Data acquisition software

Thank you!

BACKUP

ABS							85% value			
HFS after Sextupole 1	MFT	HFS after Sextupole 2	SFT	WFT	HFS after ABS	Pz	Pzz	Pz	Pzz	Beam
1, 2, 3		1, 2, 3			1, 2, 3	+1/3	-1/3	0.272	-0.332	0
1, 2, 3	1-4	2, 3			2, 3	0	-1	-0.02	-0.85	1
1, 2, 3	3-4	1, 2			1, 2	+2/3	0	+0.561	-0.02	2
1, 2, 3	3-4	1, 2		on	3, 4	-2/3	0	-0.561	+0.02	3
1, 2, 3	3-4	1, 2	2-6		1, 6	+5/6	+0.5	+0.714	+0.434	4
1, 2, 3	1-4	2, 3	2-6		3, 6	+1/6	-0.5	+0.145	-0.391	5
1, 2, 3	1-4	2, 3	3-5		2, 5	-1/6	-0.5	-0.145	-0.459	6

POLIS							75% value			
HFS after Sextupole 1	MFT	HFS after Sextupole 2	SFT	WFT	HFS after ABS	Pz	Pzz	Pz	Pzz	Beam
1, 2, 3		1, 2, 3			1, 2, 3	0	0	0	0	0
1, 2, 3	1-4	2, 3			2, 3	-0.5	-0.5	-0.375	-0.375	1
1, 2, 3	3-4	1, 2			1, 2	+0.5	-0.5	+0.375	-0.375	2
1, 2, 3	3-4	1, 2		on	3, 4	-1	+1	-0.75	+0.75	3
1, 2, 3	3-4	1, 2	2-6		1, 6	+1	+1	+0.75	+0.75	4
1, 2, 3	1-4	2, 3	2-6		3, 6	0	+1	+0.02	+0.75	5
1, 2, 3	1-4	2, 3	3-5		2, 5	0	-2	-0.02	-1.5	6

R. E. Brown, N. Jarmie, Phys. Rev. C 41 N4 (1990)