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Infinite Hotel?
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Infinite Hotel?

www.hotelcarlton.net/fotogallery-carlton

Not really
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Infinite Hotel?

Rather in the spirit of David Hilbert’s lecture from 1924

komplexify.com/blog/2014/05/14
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Infinite Hotel?

or in the spirit of the infinite escallators

H.B. Nielsen & A.W., NBI-HE-87-32 (1987)
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What is an anomaly?
In short: A quantum-mechanical obstruction to a classical conservation law

Outline of the lecture:

I. Anomalies ✓
(a) Warm-up: index of a harmonic oscillator ✓
(b) The U(1)A anomaly in 1+1 D – an infinite hotel story ✓
(c) Adler-Bell-Jackiw (chiral) anomaly in 3+1 D ✓
(d) Digressions: the scale anomaly etc.✓
(e) Application: the π0 → γγ decay ✓

II. From the U(1)A problem to axions
(a) U(1)A problem and instantons✓
(b) θ vacuum and strong CP problem ✓
(c) Peccei-Quinn mechanism and axions
(d) Invisible axions
(e) The Empire strikes back (!?) ✓
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PART I
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Warm-up: index relation for single harmonic oscillator
What is wrong with the following calculation?:

Tr ([a,a†]) = Tr (aa† − a†a) ?
= Tr (aa† − aa†) = Tr (aa†) − Tr (aa†) = 0 ?

Only true if the a and a† Hilbert spaces are truncated at the same order
(i.e. only matrix elements ⟨n+1∣a†∣n⟩ and ⟨n∣a∣n+1⟩ with n = 0,1,2, . . . ,N trunc):

Trtrunc(ata
†
t − a†

tat) =
N trunc

∑
n=0

(n+1) −
N trunc+1

∑
n=1(→0)

n =
N trunc

∑
n=0

(n+1) −
N trunc

∑
m=0

(m+1) = 0 .

In the infinite limit of the truncation parameter a suitable regularization needed:

Tr([a,a†] (e−s a†a−e−s aa†
)) = Tr(e−s a†a−e−s aa†

)

= Tr(e−s a†a) − Tr(e−s aa†
) =

∞
∑
n=0

e−sn −
∞
∑
n=0

e−s(n+1) = 1 ∀s > 0

= dim Ker(a) − dim Ker(a†) ≡ Index(a) since Ker(a) = {∣0⟩} but Ker(a†) = ∅.

Vanishing index in truncated space, but recovery of non-zero index in infinite

(hotel) limit: one of the characteristic properties of the quantum anomaly.
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The U(1)A anomaly in 1+1 D – an infinite hotel story
1 Dispersion for massless fermions in 1+1 D:

E

rig
ht−

mov
ers

left−movers

p

2 Add electric field
to a single right/left-mover:

3 However, for infinite mode sums the level shifts induce a surplace of right-movers:
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The U(1)A anomaly in 1+1 D – an infinite hotel story
1 Dispersion for massless fermions in 1+1 D:

E

rig
ht−

mov
ers

left−movers

p

2 Add electric field
to a single right/left-mover:

p

E

E

Nothing happens to single states,
except energy change.

3 However, for infinite mode sums the level shifts induce a surplace of right-movers:

p

E
E Q̇V = Q̇R + Q̇L = 0

(vector charge still conserved)

Q̇A = Q̇R − Q̇L = L
2π2eE ≠ 0

(axial charge not conserved: anomaly)
↪local & Lorentz inv.: ∂µjµA =

e
2π ε

µνFµν
Andreas Wirzba 6 40



Level shift method
H.B. Nielsen & M. Ninomiya, PLB 130 (1983)

Dispersion of massless fermions coupled to an uniform electric field in

A0 = 0 gauge ∶ ∂0A1 = E and i∂0ψR/L(x) = ±(−i∂1 + eA1)ψR/L(x)

Right/left-handed fermions: ωR/L = ±(p + eA1) and ω̇R/L = ±eE

Quantization in a box of length L ; density of states ∆N
∆p = L

2π

ṄR/L =
∆NR/L

∆t
=

∆NR/L

∆pR/L

∆pR/L

∆t

= L
2π ω̇

Fermi
R/L = L

2π (±eE) = Q̇R/L

Vector charge

Q̇V = ṄR + ṄL = 0 ← gauge invariance

Axial charge

Q̇A = ṄR − ṄL = Le
π

E ← anomaly

Andreas Wirzba 7 40



Explicit symmetry breaking: modification due to a mass term

Modi�cation in presence of mass term

Choose a vector potential

A1(t) =





0 for t < 0

Et for 0 ≤ t ≤ τ
Eτ for t ≥ τ





If E is turned on

Two limiting cases:

Diabatic approximation: τ � m−1.

E is suddenly turn on→ Axial anomaly

Adiabatic approximation: τ � m−1.
E is turn on so slowly→ ∆QA = 0

María Paulina Rocha Morán (Bonn Univ.) Axial Anomalies 12.06.2013 11 / 23

Vector potential

A1(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for t < 0
Et " 0 ≤ t ≤ τ
Eτ " t ≥ τ

If E is turned on, two limiting cases:

1 Diabatic approximation: τ−1 ≫ m

E suddenly turned on ; ∆QA ≠ 0

2 Adiabatic approximation:

τ−1 ≪ m
E slowly turned on ; ∆QA = 0

Modi�cation in presence of mass term

m in units of τ−1 and ∆Q5 in units of the anomaly.

Pauli-Villars regularization [1949]

= ie εµν

π
qµ

María Paulina Rocha Morán (Bonn Univ.) Axial Anomalies 12.06.2013 12 / 23

[anomaly]

J. Ambjørn et al., NP B221 (1983) 381 (note: m in units of [t−1])

Andreas Wirzba 8 40



Mass modification (II) – Pauli-Villars regularization
W. Pauli & F. Villars, Rev. Mod. Phys. 21 (1949):

Ghost-fermions with Bose statistics and mass M ≠ 0 added gauge
invariantly to standard Lagrangian; limit M →∞ assumed in the end:

iqµJµ5 (q) = iqµ ψ̄(q)γµγ5ψ(q) = 2im ψ̄(q)γ5ψ(q)

Ð→ iqµ

m

− iqµ

M

= (−)ie∫
d2k`
(2π)2

Tr [2im γ5 1
/k` −m

γν
1

/k` + /q −m
]

+ lim
M→∞

ie∫
d2k`
(2π)2

Tr [2iM γ5 1
/k` −M

γν
1

/k` + /q −M
]

m→0ÐÐÐ→
M→∞

0 − lim
M→∞

2M e∫
d2k`
(2π)2

Tr [γ5(/k` +M)γν(/k` +/q)]
(k2
` −M2)2

= +ie
εµν

π
qµ

Note: if also m →∞, then ∂µJµ5 = 0 as expected:

↪ anomaly contribution completely canceled by the mass term.

Andreas Wirzba 9 40



Level shift method in 3+1 dimensions
Landau levels H.B. Nielsen & M. Ninomiya, PLB 130 (1983) 389

1 Weyl fermions in uniform magnetic field H along 3rd axis:

Aµ(x⃗ , t) = δµ 2 H x1 in temporal gauge A0 ≡ 0

2 In the end, a parallel electric field E is switched on as well:

δAµ(x⃗ , t) = δµ 3 (−E) t for 0 < t < τ

The e.o.m. [i∂t ∓ (−i∇⃗ − eA⃗) ⋅ σ⃗]ψR/L(x) = 0

Ansatz: ψR/L = [i∂t ± (−i∇⃗ − eA⃗) ⋅ σ]φR/L(x) (auxiliary field)

Satisfies differential eq. of harmonic oscillator type in 2 D
plus free motion along the 3rd axis:

ω(n, σ3,p3) = ±
√

2eH (n + 1
2) + eHσ3 + p2

3 with the EVs σ3 = ±1

↪ Landau levels
Andreas Wirzba 10 40



Landau levels and chiral anomaly in 3+1 D

ω(n, σ3,p3) = ±
√

2eH (n + 1
2) + eHσ3 + p2

3 with the EVs σ3 = ±1

1 Double-degenerate hyperbolic dispersions if n > 0 or σ3 = +1:

ω(n, σ3=+1,p3) = ω(n+1, σ3=−1,p3) ; ±
√

(2n+1)eH + p2
3

2 but non-degenerate linear dispersions for n = 0 and σ3 = −1:

ωR/L(n=0, σ3 = −1,p3) = ±p3 ; right-moving (ωR = +p3) & left-moving (ωL = −p3)
Volume 130B, number 6 PIIYSICS LETTERS 3 November 1983 

[ _ ( 3 / 3 x l ) 2  + (eH)2(xl + P2/eH) + (1o3) 2 + eHo3] cb 

= co2@ , 

with 03 = + 1. The energy levels are given by the 

Landau levels, 

co(n, 03, P3) = -+ [2eH(n + ~-) + (/°3) 2 + eHo 3 ] 1/2 

(n : 0 ,  1 , 2 ,  ...) 

except for the n = 0 and 03 = - 1  mode where 

co(n = 0, cr 3 = - 1  ,P3) = -+P3 • 

The eigenfunction takes the form 

qbncr3(X ) = Nno  3 exp(- iP2x2 - ie3x3 ) 

(7) 

(s) 

n~2 ~ n:n[:O 

~ P3 

n=2 

Fig. 2. Dispersion law for the  RH Weyl fermion in 3 + l di- 
mensions in the presence of  a magnetic  field in the x 3-direc- 
tion. 

× exp[-~eH(x 1 +P2/eH)2IHn(X 1 +P2/eH)x(o3),  
(9) 

with Nno 3 as the normalization constant.  Here X(o3) 
denotes the eigenfunctions of  the Pauli spin o 3 which 
carl be taken as X(1) = (1) and X(-1)  = (~). The solu- 
tion of  (4) is obtained by inserting (9) into (6). This 
leads to the relations 

~J~ff +1'O3= 1) =(jWn+l,o.3=_l/N,tr3=l)l~/(R t'/'O'3=1), 

for n = 0, 1 . . . . .  

amt 

~ ( n = 0 , o 3 = - l )  = 0, with co = - P 3  • 
R 

Thus the energy levels o f  CR are (4) and 

co(r/ = 0, a 3 = --1 ,P3)  =P3 " (10) 

The dispersion laws (7) and (10) are shown in fig. 2. 
Next a uniform electric field is turned on along the 

third direction parallel to H. As for the zero mode 
(n = 0, a 3 = - 1 )  the dispersion law is the same as 
that for 1 + 1 dimensions and the creation rate of  the 
particles is calculated in a similar manner. It should 
be noticed that when E is on adiabatically there is no 
particle creation in the n v s 0 modes. The density of  
the state per length L isLeH/4zr 2 and the creation 
rate (the ABJ anomaly) is given by 

NR = L -  l(LeH/47r2)cofs(n = 0, o 3 = - 1  ' P3 )  

= (e2[4rr2)EH, (11) 

which equals to OR'  

For  the LH fermions the annihilation rate of  the 
LH particles is 

NL = -(e2/41r2)EH' (12) 

and the creation rate of  the LH antiparticles is 

NL = (e2 /47r2)EH , (13) 

which is 0 L . 
We then have for the Dirac field 

X;R + NL = (e2/2,~2)~/-/. 

that gives 0 5  = (eZ/2rr2)EH. 

3. Consider next  the hamiltonian version of  a 
general lattice regularized two-component  chiral fer- 
mion theory described by an N component  fermion 
field ffk. We further assume the locality and hermici- 
ty conditions for the hamiltonian. The action is given 
by 

N 
S - i f d t ~  ~ + = ~k (na) ~/k(na) 

n k=l  

- f d ,  1 3 2  Z:  - 
n m k l  

Here n denotes the set o f  integers, a the lattice spacing 
and H a local and harmitian N × N hamiltonian. A 
characteristic feature of  the lattice fermion theory is 
that,  because S is invariant under a lattice translation 
with ~ sitting on the lattice sites, the momentum 
space forms a hypertorus,  T 3 , which is the Brillouin 
zone. 

391 

Nielsen & Ninomiya (1983)

ṄR =

2D Landau
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
eH L1L2

2π
×

1D
«
L3

2π
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d.o.s

×

+eE as in 1+1 D
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ω̇Fermi

R (n=0, σ3=−1,p3)

= −ṄL ; Q̇V = ṄR + ṄL = 0

& Q̇A = ṄR − ṄL =
L1L2L3

2π2
e2EH

Lorentz cov.ÐÐÐÐÐ→ ∂µJµA = − e2

16π2 ε
µνρσFµνFρσ

Andreas Wirzba 11 40



Adler-Bell-Jackiw anomaly in 3+1 D
also called abelian chiral anomaly

S. Adler, Phys Rev. 177 (1969) 2426; J.S. Bell & R. Jackiw, Il Nuovo Cim. A60 (1969) 47

In integral form:

Q̇A = e2

8π2∫ d3x 4 E⃗ ⋅ B⃗ = − e2

8π2∫ d3x Fµν F̃µν with F̃µν = 1
2 ε
µνρσFρσ .

In local operator form (plus expl. breaking due to fermion mass term):

∂µJµA (x⃗ , t) = − e2

8π2
Fµν F̃µν + 2miψ̄γ5ψ .

QED case: valid for dynamical as well as background E⃗ , B⃗ fields.

also valid for non-abelian gauge fields, e.g. QCD case:

replace e2 FF̃ by g2
s Trflavor(1)Trcolor (tatb)GaG̃b = g2

s NF
1
2 GaG̃a.

Should be discriminated from the non-abelian chiral anomaly

DµJaµ
A =− 1

4π
Tr [tag2

s ( 1
4 FV F̃V + 1

12 FAF̃A + 2
3 igs (AAF̃V+AF̃V A+F̃V AA) − 8

3 g2
s AAÃA) + . . . ]

Andreas Wirzba 12 40



Overview about chiral anomaly vs. regularization
Regularization methods have to be invariant under gauge transf’s:

Point-splitting and Wilson line (because of gauge invariance):

JµA → limε→0+ q̄(x+ε/2)γµγ5e−ie ∫
x+ε/2

x−ε/2 Aν
(x ′)dx ′ν q(x−ε/2)

Standard cutoff-regularization: loop integral linearly divergent:

shift of the integrand ; extra surface term
gauge inv.ÐÐÐÐ→ anomaly

Dimensional regularization (which is gauge invariant):
/q γ5 = (/q + /k loop − /k loop)γ5 = (/k loop + /q)γ5 + γ5 /k loop − {/k loop, γ

5}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
↪ anomaly

Pauli-Villars method: anomaly from the presence of the non-zero
regulator mass M of the ghost fields (by preserving gauge invariance).

(Eucl.) Path-integrals ∫ [DψDψ̄] exp(− ∫ d4x L) with ψ → ψ′ = Uψ:

action still invariant, S[ψ]Ð→ S[ψ′] = S[ψ], but measure i.g. not:

[DψDψ̄] ψ→ψ
′

Ð→ [DψDψ̄] × (Jacobian)−2 = [DψDψ̄]e−iα ∫anomalyE

Andreas Wirzba 13 40



The decay of the neutral pion: π0 (135 MeV, JPC
= 0−+)

Γexp.(π0 → γγ) = 7.63 eV and BRexp.(π0 → γγ) = 98.92%, such that

Γtotal(π±) ca. 10−9× smaller because π+ → µ̄νµ is a weak decay.

Apply Partial Conservation of the Axial Current (PCAC):

⟨0∣Jµa
A (x)∣πb(q)⟩ = iFπqµ δabe−iqx ,

and

∂µ⟨0∣Jµa
A (x)∣πb(q)⟩ = Fπq2δabe−iqx = FπM2

π δ
abe−iqx .

(Fπ = 92.2 MeV is the pion decay constant and Mπ the pion mass)

In the chiral limit M2
π → 0, the axial current seems to be ‘conserved’;

however, there is still the anomaly for the a = 3 (π0) case:

∂µJµ3
A = − e2

16π2
εµναβFµνFαβ × Trcolor(1) × Trflavor(

1
2
τ 3 Q2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Nc×

1
2 (Q

2
u−Q2

d)= 3× 1
2 (

4
9−

1
9 )=

1
2
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π0 decay via ’t Hooft anomaly matching and PCAC

∂µJµ3
A = − e2

32π2
εµναβFµνFαβ (assuming Nc = 3)

and M(π0 → γγ) ≡ Aερσαβε⋆1ρε
⋆

2σk1αk2β

π0

γ

γ

A
PCAC

−iqµ
!= −iqµ

∂µ ⟨0∣Jµ3
A ∣π3⟩ ⋅ iDπ0(q2) ⋅ iM(π0 → γγ) != anomaly

⇒ (−iqµ)(iFπqµ) ⋅ i
q2 −M2

π↓0
⋅ iA = −FπA != − e2

4π2

⇒ A = e2

4π2Fπ
, Γ(π0 → γγ) = ∣A∣2 M3

π

64π = 7.76 eV (Nc = 3)

vs. Γexp. = (7.63 ± 0.16)eV

; pions have to be Goldstone bosons in the chiral limit
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Caveat in counting the number of colors
Electric quark charges Qu,d,s for arbitrary number of colors Nc

O. Bär & U.-J. Wiese, NP B 609 (2001)

Q(π±) = Q(ud̄/dū) = ±(Qu −Qd) = ±1 ,

Q(K±) = Q(us̄/sū) = ±(Qu −Qs) = ±1 ,

Q(p/n) = Nc+1
2 Qu/d + Nc−1

2 Qd/u = 1/0 ,etc.

; Qu = 1
2 (1 + 1

Nc
) and Qd,s = − 1

2 (1 − 1
Nc

) .

Ô⇒ Γ(π0 → γγ) independent of number of colors:

∂µJ3
5µ =

−e2

8π2
Fµν F̃µν × Trcolor(1) × Trflavor [t3 Q2] != −e2

16π2
Fµν F̃µν

↪ Nc×
1
2
(4

9
−1

9
) = Nc

6
→ Nc×

1
2
(1+2N−1

c +N−2
c

4
− 1−2N−1

c +N−2
c

4
) = Nc×

1
2Nc

= 1
2

∀Nc .

Similarly for η8 → γγ, but not for η1 → γγ or physical η, η′ → γγ.
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DIGRESSIONS
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Digression: scale anomaly and true generation of hadron masses
(in the case of pure Yang-Mills theory for simplicity)

SYM = ∫ d4x −1
4g2

0
Ga
µνGaµν , classical Yang-Mills action (g0 bare coupling):

invariant under x → λ−1x and Aa
µ → λAa

µ (scale transformations withλ > 0)

generated by the current JD
ν = xµθµν with the symmetric and conserved

energy-momentum tensor θµν = − 1
g2 (Ga

µρGaρ
ν − 1

4 gµνGa
αβGaαβ).

↪ ∂νJD
ν = θµµ

!= 0 classically!

Now dimensional regularization to one-loop order:

δSYM = ∫ d4−εx [− 1
4 ( 1

g2
s
+ β0

8π2
1
ε
) (λε − 1)Ga

µνGaµν] (here β0 = 11Nc/3)

→ ∫ d4x lnλ (− β0
32π2 Ga

µνGaµν) Ð→ θµµ = − β0
32π2 Ga

µνGaµν

↪ dim. transmutation: mass scale at quantum level via scale anomaly
↪ in the chiral limit (!) all hadron masses are proportional to this scale

0 ≠ ⟨mhad(p)∣θµµ ∣mhad(p′)⟩ p′→p= gρσ(pρpσ
+pσpρ

2mhad
) = mhad(ΛQCD) (glue ball mass)

Adler, Collins, Duncan, PRD 15 (1977)
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Digression (II): EW Baryogenesis in the Standard Model ?

Conservation of the EM current under weak (L −R) interactions:

+∂µB
µ
EM

W±

W∓
∂µL

µ
EM

W±

W∓

qL ℓL

∝ Nc · (Qu+Qd) + (0− 1) = 1− 1 = 0

↪∆(QB +QL) = 0 (charge conservation!)

Sakharov criteria

1 B violation ✓
(∆(B+L) ≠ 0 sphaleron transitions)

2 C & CP violation x
(CKM determinant)

3 Nonequilibrium dynamics x
(only fast cross over for µchem = 0)

EW Baryogenesis: Standard Model

Weak Scale Baryogenesis

• B violation

• C & CP violation

• Nonequilibrium 
dynamics

Sakharov, 1967

Anomalous Processes

Different vacua: Δ(B+L)= ΔNCS
!

A"

Kuzmin, Rubakov, Shaposhnikov
McLerran,…

Sphaleron Transitions

M.J. Ramsey-Musolf, ECT*, Trento, Oct. 2012
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Digression (II): EW Baryogenesis in the Standard Model ?
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Digression (III): global anomaly and index theorem

In 1+1D:

For free fermions we have ∫d2x ∂µJµA = ∫dt Q̇A = NR −NL = 0

Switch on F01 = E such that ∂µJµA = e
2π ε

µνFµν = e
π
∂µ(εµνAν)

NR −NL still vanishes for perturbative gauge transformations
respecting periodic boundary conditions at x = 0,L.

For a constant E , however, we have NR −NL ≠ 0, in fact

∫ d2x ∂µJµA = NR −NL = ∫ d2x
e

2π
εµνFµν .

Esp. NR −NL = 2, i.e. the same fermion spectrum as at t < 0,
but the right/left-movers are shifted up/down by one unit,
if Aν(x) = δν 1A1(t) = (t/τ)2π/(eL) for 0 < t < τ and zero else.

This is a 1+1 D version of the Atiyah-Singer index theorem (1963).
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Summary of anomaly part of the lecture
Quantum corrections to a classical Noether current (incuded by a
continuous symmetry) might involve regularizations

which introduce a (regularization) scale
and which might not preserve all of the classical symmetries.

If this is the case, there is a quantum anomaly:

a quantum mechanical obstruction to
a classical conservation law

Adler-Bardeen non-renormalization theorem: Adler & Bardeen, PR 182 (1969)

chiral anomaly is given by lowest-order (1-loop) contribution
– proof: either perturbatively or by topological arguments & index theorem

in 3+1 D: only triangle anomaly for abelian gauge fields but
triangle, box and pentangle anomalies for non-abelian gauge fields
(due to the commutator term in Gµν = ∂µGν − ∂νGµ − ig[Gµ,Gν])

all hadron masses in the chiral limit (zero quark masses) result
solely from the scale/trace anomaly via dimensional transmutation
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PART II
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U(1)A problem: why only N2
F − 1 Pseudo-Goldstone Bosons ?

GBs arise from spontaneous symmetry breaking (SSB) with
one massless GB per broken symmetry generator (=‘charge’)

Pseudo-GBs acquire finite mass from small explicit SB

In the chiral limit, the QCD Lagrangian is invariant under

U(NF)L ×U(NF)R = SU(NF)L × SU(NF)R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

chiral group

×U(1)V
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
baryon #

×U(1)A
´¹¹¹¹¹¸¹¹¹¹¹¶

?
SSBÐÐ→ {SU(NF)L × SU(NF)R/SU(NF)V} ×U(1)V ×U(1)A

What about the extra U(1)A symmetry? Spontaneous SB?
Is there an extra "(P)GB" in addition to the N2

F − 1 ones? Not really:

NF = 2 ∶ mπ0 ≈ 135 MeV ,mπ± ≈ 139 MeV ≪ mη ≈ 548 MeV
NF = 3 ∶ mπ0 ≲ mπ± < mK± ≲ mK 0,K̄ 0 < mη ≪ mη′ ≈ 958 MeV

while for NF ≥ 2 there is the naive bound: m "η"
!
<
√

3mπ ≈ 240 MeV.

↪ This is the U(1)A problem S. Weinberg, Phys. Rev. D 11 (1975) 3583

What happens to the extra U(1)A symmetry at quantum level?
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U(1)A anomaly

Anomaly of the axial U(1)A current in QCD (in the chiral limit):

∂µJµA = −g2
s NF

16π2
Ga
µνG̃aµν (however, ∂µJaµ

A = 0 ∀a since Trflavor[ 1
2λ

a] = 0).

Under the axial transformation qf → eiαγ5/2qf , the chiral anomaly
affects the action by (the Jacobian of the path integral measure):

−2 ln J = 1
2α∫ d4x ∂µJµA = −α g2

s NF

32π2 ∫ d4x Ga
µνG̃aµν

Note that GaG̃a = ∂µKµ (a total derivative!) with

Kµ = εµνρσTr (AνGρσ + i 2
3 AνAρAσ) (Chern-Simons current)

↪ the U(1)A anomaly of QCD is irrelevant in perturbation theory
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Instantons and non-trivial vacua in QCD
Non-perturbatively, there exists instantons with

∫
R4

d4xE
1

32π2
GG̃ = integer ∈ π3(G) for ∂R4≡S3 Ð→ G ⊃ SU(2)

for a gauge theory with non-Abelian group G with homotopy:π3(SU(2))=Z

Thus QCD has a topologically non-trivial vacuum structure:

with winding number n

instantons (= large gauge transformations) induce ∣n⟩→ ∣n + 1⟩ etc.
↪ and solve the UA(1) problem ’t Hooft, PRL 37 (’76), PRD 14 (’76), 18 (’78)

However, any naively chosen vacuum ∣0⟩n ≡ ∣n⟩ (n arbitrary, but fixed)

1 is unstable under the one-instanton action, Ω1 ∶ ∣0⟩n → ∣0⟩n+1,
2 is not gauge invariant under large gauge transformations,
3 violates cluster decomposition: ⟨O1O2⟩

!= ⟨O1⟩⟨O2⟩ which can

be traced back to causality, unitarity (and locality) of the underlying field theory.
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θ vacua in strong interaction physics
Thus true vacuum must be a superposition of all ∣n⟩ vacua:

∣vac⟩θ ≡
+∞

∑
n=−∞

einθ ∣n⟩ with Ω1 ∶ ∣vac⟩θ → e−iθ ∣vac⟩θ (with a phase shift only)

Note θ′⟨vac∣e−iHt ∣vac⟩θ = δθ−θ′×θ⟨vac∣e−iHt ∣vac⟩θ such that θ is unique.

↪ θ is another parameter of strong interaction physics (as mu,md , ...):

LQCD = LCP
QCD +L��CP

QCD = LCP
QCD + θ

g2
s

32π2
1
2ε
µνρσGa

µνG̃a
ρσ .

Under axial rotation of the quark fields qf → eiαγ5 qf ≈ (1+ iαγ5)qf

LQCD → LCP
QCD − 2α∑f mf q̄iγ5q + (θ − 2Nfα)

g2
s

32π2
G̃a
µνGa,µν

↪ Lstr��CP
SM = LCP

SM + θ̄
g2

s

32π2
1
2ε
µνρσGa

µνGa
ρσ with θ̄ = θ+arg detM

Note if any quark mass mf were zero, then the θ̄ angle could be removed by a

suitable axial rotation with αf = −θ̄/2.
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Strong CP problem
The resolution of the U(1)A problem – via the complicated nature of the
QCD vacuum – effectively adds an extra term to the QCD Lagrangian:

Lθ̄ = θ̄
g2

s

32π2
1
2ε
µνρσGa

µνGa
ρσ

This term violates parity P and time-reflection invariance T
(since only ε0123 and permutations are non-zero)

but conserves charge conjugation invariance C ;��CP ;

it induce an electric dipole moment (EDM) for the neutron:

∣dn∣ ≃ ∣θ̄∣ ⋅
mq

ΛQCD
⋅ e

2mn
∼ ∣θ̄∣ ⋅ 10−2 ⋅ 10−14e cm ∼ ∣θ̄∣ ⋅ 10−16e cm

compared with ∣dexp.
n ∣ < 2.9 ⋅ 10−26e cm Baker et al., PRL 97 (2006).

↪ ∣θ∣ ≲ 10−10, while NDA (naive dim. analysis) predicts ∣θ̄∣ ∼ O(1).

(Note that the other CP-violating phase of the SM, δKM , is indeed of O(1)).

This mismatch is called the strong CP problem.
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Resolution(s) of the Strong CP problem

Fine-tuning
– motivated by many-worlds scenarios, anthropic principle (?) etc.

or spontaneously broken CP such that θ̄ ∶=0 at the Lagrangian level
– but θ̄ ≠ 0 reintroduced at the loop level
– and the CKM mechanism predicts��CP of explicit and not of SSB nature

or an additional chiral symmetry
(i) by a vanishing (u-)quark mass (?)

– excluded by Lattice QCD: mu = 2.7+0.7
−0.5 MeV Particle Data Group (2014)

(ii) or by an additional global chiral UPQ(1) symmetry of the SM
– Peccei-Quinn (PQ) mechanism Peccei & Quinn, PRL 38 & PRD 16 (1977)

– including axions Weinberg, PRL 40 (1978), Wilczek PRL (40) (1978)

⋮
(iii) however, the “Empire strikes back": fine-tuning may be back

– reintroduced by Planck-scale explicit PQ-symmetry breaking terms.
Kiwoon Choi (Daejeon, Korea), Bethe-Lectures, Bonn, March 2015
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Peccei-Quinn symmetry and the axion
Peccei & Quinn (1977): imposed on the SM
a global chiral U(1)PQ symmetry that is non-linearly realized (i.e. SSB)

Peccei & Quinn, PRL 38 & PRD 16 (1977)

Weinberg & Wilczek (1978): introduced the corresponding Nambu–
Goldstone boson, the so-called axion Weinberg, PRL 40 (1978), Wilczek PRL (40) (1978)

The static angular parameter θ̄ (mod 2π) is replaced by a dynamical
pseudoscalar field which transforms under PQ as

U(1)PQ ∶ a(x)→ a(x) + faαPQ

where fa is the order parameter associated with SB U(1)PQ symmetry.

The SM Lagrangian is augmented by axion interactions

Ltotal = LSM+θ̄
g2

s

32π2
Gc
µνG̃cµν+ 1

2∂µa∂µa+Lint[∂µa/fa, ψ, ψ̄]+ξ
a
fa

g2
s

32π2
Gc
µνG̃cµν

↪ the PQ current is anomalous: ∂µJµPQ ≡ ∂µ (fa∂µa + ∂Lint
∂ ∂µa) = ξ

g2
s

32π2 Gc
µνG̃cµν
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The effective potential for the axion field
The minimum of this effective potential occurs at ⟨a⟩ = −θ̄fa/ξ:

⟨∂Veff

∂a
⟩ = − ξ

fa
⟨ g2

s

32π2
Gc
µνG̃c µν⟩ ∣

⟨a⟩=−θ̄fa/ξ

= 0

such that the θ̄ term is canceled out at this minimum.
Without the QCD anomaly, the U(1)PQ symmetry is compatible with
all values

0 ≤ ξ ⟨a⟩
fa

< 2π .

With the QCD anomaly the axion potential has to be periodic in the
effective vacuum angle θ̄ + ⟨a⟩ξ/fa:

Veff ∼ − cos(θ̄ + ξ
⟨a⟩ + aphys.

fa
) with the minimum at ⟨a⟩ = − fa

ξ
θ̄

and m2
a = ⟨∂

2Veff

∂a2
⟩ = − ξ

fa
∂

∂a
⟨ g2

s

32π2
Gc
µνG̃cµν⟩ ∣

⟨a⟩=−θ̄fa/ξ
as axion mass
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Low-energy effective field theory

For p < ΛQCD: low-energy EFT of Σij = (eiφ)
ij
∝ ⟨q̄RjqLi⟩ with φ nonet of

pseudoscalar mesons: π,K , η, η′

U(3)L ×U(3)R reparameterization ∶
Σ→ LΣR†, M → LMR†, θ̄ → θ̄ − arg det(LR†)

V(Σ) = V0 (eiθ̄ det Σ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∼Λ4
QCD

− v3 Tr (MΣ† + h.c.)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼Λ3

QCDM & v3∶=
m2
π f2π

(mu+md )

θ̄ = ξ⟨a⟩/fa for a→ a + 2πfa (axion periodicity) with axion decay
constant fa and ξ = NDW (multiplicity of axion vacua)

V(a) = Vθ̄=ξa/fa = −f 2
πm2

π

¿
ÁÁÀm2

u +m2
d + 2mumd cos(NDWa/fa)

(mu +md)2
≡ VQCD(a)

Dyn. relaxation: θ̄ = ξ ⟨a⟩fa
, ma

2 = ∂2

∂a2 V(a)∣⟨a⟩=0 ≈ mumd
(mu+md)

2

f 2
πm2

π

(fa/ξ)2
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The road to the invisible axion models

Laxion-ints = Lint(∂µa/fa, ψf ) + ξ
a
fa

g2
s

32π2
Gc
µνG̃c µν

The U(1)PQ order parameter fa:

fa associated with the scale of the spont. breaking of the PQ symm.

original PQ-model (w. two Higgs) had fa ∼ vF ≡
√

v2
1 + v2

2 ≈ 246 GeV

and predicted BR(K+ → π+ + a) < 3 ⋅ 10−5 ⋅ (v2/v1 + v1/v2)
however BRexp(K+ → π+nothing) < 3.8 ⋅ 10−8

Asano et al. (KEK), PLB 107 (1981)

such that fa ≫ vF

Basically two classes of invisible axion models:

KSVZ model: scalar field σ with fa=⟨σ⟩≫vF and super-heavy quark
with PQ charge and MQ∼fa Kim, PRL 43 (’79); Shifman, Vainshtein, Zakharov, NPB 166 (’80)

DFSZ model: adds to original PQ model a scalar field with PQ
charge and fa = ⟨φ⟩ ≫ vF Dine, Fischler, Srednicki, PLB 104 (’81), Zhitnitsky, Sov.J.NP 31 (’80)
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Photon couplings to axions
QCD anomaly induces an anomalous axion-coupling to 2 photons, e.g.:

LKSVZ
axion = a

fa
(ξ g2

s

32π2
Ga
µνG̃aµν + 3e2

Q
αEM

4π
Fµν F̃µν)

The aγγ coupling has to be corrected by the axion mixing with the
lowest pseudoscalars:

3e2
Q → 3e2

Q −
4md +mu

3(mu +md)

aγγ couplings in general:

Gaγγ =
αEM

4πfa
[2E

N
− 4md +mu

3(md +mu)
]

E & N strength of em / strong
anomaly, respectively:

DSFZ: E/N = 8/3,
KSVZ: E/N = 0 (if eQ ∶= 0)

Axion Photons

Gaγγ = C(E/N, z)ma
Yellow band for different

E/N.

Vergis (Uni Bonn) The Axion Seminar Talk, January 2015 16 / 36

A. Ringwald et al., PDG (2014)
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Window for axion searches S.Asztalos, ed. G.Bertone, Cambridge Univ. Press (’10)

Axion Searches- Axion Window

Vergis (Uni Bonn) The Axion Seminar Talk, January 2015 27 / 36

Axion searches

in Labs (Colliders, Lasers) – light-shining-through-the-wall (e.g. ALPSII)

for Astro-sources –Helioscopes (e.g. CAST, IAXO)

for galactic axions – Halioscopes/microwave cavities (e.g. ADMX)

indirect constraints: – from Astrophysics (red giants, SN 1987a)
– and from Cosmology: DM bounds (ΩCDM ≈ 0.22) on axion oscillations

; f max
a ↔ mmin

a
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Preliminary Summary: Axions

predicted as a / the resolution of the Strong CP problem:

to escape the fine-tuning problem ∣θ̄∣ < 10−10 while δKM ∼ O(1)
extendible to ALPS: axion-like particles with fa and galpsγγ decoupled

couple feebly (∼ 1/fa) and gravitationally to matter and radiation

can be candidates for Cold Dark Matter

i.e. with a well-determined and narrow window for searches:

Thanks

...A window open to search into!

Thank You especially my supervisor A. Wirzba
Vergis (Uni Bonn) The Axion Seminar Talk, January 2015 35 / 36

however fine-tuning may back ...
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T HE EMPIRE
ST RIKES
BACK

Andreas Wirzba 37 40



Axions and EDMs: generic effective Lagrangian of the axion
Kiwoon Choi (Daejeon, Korea), Bethe-Lectures, Bonn, March 2015

Leff(a) = L0
¯

indep. of a

+ 1
2(∂µa)2 + ∂µa

fa
J̃µ(ψ̄...ψ, φ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PQ-invariant

+ a
fa

N
32π2

GG̃

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
expl. PQ-breaking
by QCD anomaly+∆LUV (= −εm4

UV cos(a/fa + δUV))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a coupling from expl. PQ breaking at UV scale

θ̄ = ⟨a⟩/fa is calculable in terms of the��CP angles ( in presence of a ! ):
δKM = Kobayashi-Maskawa phase in the PQ-invariant SM
δBSM =��CP phase in PQ-invariant BSM at the scale mBSM

δUV =��CP phase in explicit PQ-breaking sector at mUV ∼ MPlanck

VQCD ∼ f 2
πm2

π cos(a/fa) (expl. PQ-breaking by low-energy QCD)

VKM ∼ f 2
πm2

π ×

10−14


G2

F f 4
π ×

Jarlskog inv.
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
10−5 sin δKM × sin(a/fa)

VBSM ∼ f 2
πm2

π × (10−2 – 10−3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

loop suppression

× f 2
π

m2
BSM

sin δBSM × sin(a/fa)

VUV ∼ εm4
UV sin δUV sin(a/fa)Andreas Wirzba 38 40



θ̄ = ⟨a⟩/fa and contributions to the nucleon EDM

θ̄ ∼ 10−19 sin δKM +

(10−2–10−3
)×f 2

π/TeV2

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(10−10 – 10−11) ×( TeV

mBSM
)

2

sin δBSM

+ ε
m4

UV

f 2
πm2

π

sin δUV (with ε < 10−10 f 2
πm2

π/m4
UV ∼ 10−88 for mUV ∼ MPl)

↪ Regardless of the existence of BSM physics near the TeV scale,
θ̄ = ⟨a⟩/fa can have any value below the present bound ∼ 10−10.

dN ∼ e
mN

[m∗

mN
θ̄ + G2

F f 4
π × 10−5 sin δKM + (10−2 – 10−3) × f 2

π

m2
BSM

sin δBSM

+ (10−2 – 10−3) × f 2
π

m2
UV

sin δUV]

∼ e
mN

[

∼10−2

«
m∗

mN
×

εm4
UV sinδUV
f2πm2

π«
θ̄UV + (10−2 – 10−3) × f 2

π

m2
BSM

sin δBSM]

likely dominated by θ̄UV induced by��CP in the��PQ sector @ mUV(∼MPl),
and/or by the BSM contribution near the TeV scale.
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Summary of Part II: from the U(1)A problem to axions

U(1)A problem: mη,η′ >
√

3mπ ≈ 240 MeV

– solution: complicated QCD vacuum including instantons

Problem: ∣n⟩ not unique, not gauge inv., cluster decomposition viol.

– solution: θ vacuum ( superposition of all ∣n⟩ vacua ×eiθn )

Problem: neutron EDM bound ; strong CP problem

– solution: Peccei-Quinn mechanism and axions

Problem: original Peccei-Quinn model w. fa = vF excluded by exp.

– solution: invisible axions with fa ≫ vF

Problem: how to detect an (invisible) axion

– possible solution: direct/indirect searches in rather narrow window

Problem: fine-tuning back from explicit PQ-breaking at the UV scale

– possible solution: check several EDMs (e.g. dn,dp,dD,d3He, ...)
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Jump slides
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The symmetries of QCD
LQCD = − 1

2 Tr (GµνGµν) +∑
f

q̄f (i�D −mf )qf + . . .

Dµ = ∂µ − igAµ ≡ ∂µ − igAa
µ
λa

2 , Gµν = ∂µAν − ∂νAµ − ig[Aµ,Aν]

Lorentz-invariance, P, C, T invariance, SU(3)c gauge invariance
The masses of the u, d , s quarks are small: mu,d,s ≪ 1 GeV ≈ Λhadron.
Chiral decomposition of quark fields:

q = 1
2(1 − γ5)q + 1

2(1 + γ5)q = qL + qR .

For massless fermions: left-/right-handed fields do not interact

L[qL,qR] = i q̄L�DqL + i q̄R�DqR −m (q̄LqR + q̄RqL)
and L0

QCD invariant under (global) chiral U(3)L×U(3)R transformations:

↪ rewrite U(3)L ×U(3)R = SU(3)V × SU(3)A ×U(1)V ×U(1)A.

SU(3)V = SU(3)R+L: still conserved for mu = md = ms > 0
U(1)V = U(1)R+L : quark or baryon number is conserved
U(1)A = U(1)R−L : broken by quantum effects (U(1)A anomaly + instantons)

back
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Hidden Symmetry and Goldstone Bosons
[Qa

V ,H] = 0, and e−iQa
V ∣0⟩ = ∣0⟩⇔ Qa

V ∣0⟩ = 0 (Wigner-Weyl realization)

[Qa
A,H] = 0, but e−iQa

A ∣0⟩ ≠ ∣0⟩⇔ Qa
A∣0⟩ ≠ 0 (Nambu-Goldstone realiz.)

Consequence: e−iQa
A ∣0⟩ ≠ ∣0⟩ is not the vacuum, but

H e−iQa
A ∣0⟩ = e−iQa

A H ∣0⟩ = 0 is a massless state!

Goldstone theorem: continuous global symmetry that does not leave
the ground state invariant (‘hidden’ or ‘spontaneously broken’ symm.)

mass- and spinless particles, “Goldstone bosons” (GBs)

number of GBs = number of broken symmetry generators

axial generators broken⇒ GBs should be pseudoscalars

finite masses via (small) quark masses
↪ 8 lightest hadrons: π±, π0, K±, K 0, K̄ 0, η (not η′)

Goldstone bosons decouple (non-interacting) at vanishing energy
back1 back2

Andreas Wirzba 43 40



Illustration: spontaneous symmetry breaking (SSB)

back1 back2
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Decoupling theorem of Goldstone bosons
Goldstone bosons do not interact at zero energy/momentum

1 Qa
A∣0⟩ ≠ 0 ⇒ Qa

A creates GB ⇒ ⟨πa∣Qa
A∣0⟩ ≠ 0.

2 Lorentz invariance ; ⟨πa(q)∣Aµb (x)∣0⟩ = −ifπ qµ δa
b eiq⋅x ≠ 0 !

Aµb axial current

↪ fπ ≠ 0 necessary for SSB (order parameter)
(pion decay constant fπ = 92 MeV from weak decay π+ → µ+νµ)

3 Coupling of axial current Aµ to matter fields (and/or pions)

iAµ =
Aµ

+

Aµ
π

= iRµ (non-sing.) + −ifπ qµ i
q2−m2

π+iε i V (V : coupling of GB to matter fields)

4 Conservation of axial current ∂µAµb (x) = 0: ⇒ m2
π = 0 and qµAµ = 0:

0 = qµRµ−fπ
q2

q2 V
q→0
Ô⇒ 0 = −fπ lim

q→0
V

fπ≠0Ô⇒ lim
q→0

V = 0 ⇒ decoupling!
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Degeneracy of Landau levels

The density of states for Landau levels reads:

∆n = [ L2∫
kmax

2 =L1eH

0

dk2

2π
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
# of states in square L1 ⋅L2 ⊥ B⃗,
0 ≤ x1+ k2

eH ≤ L1 ⇒ kmax
2 =L1eH

⋅ L3
∆k3

2π
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
1
h ∫ dx dp

= L2∫
L1eH

0

dk2

2π
L3

∆k3

2π

= L1L2eH
2π

L3∆k3

2π

back
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CP violation and the Electric Dipole Moment (EDM)

Fig. courtesy of Wikimedia
A. Knecht 2008

EDM: d⃗ = ∑i r⃗i ei
subatomicÐÐÐÐÐ→
particles

d ⋅ S⃗/∣S⃗∣
(polar) (axial)

H = −µ S⃗
S ⋅ B⃗ − d S⃗

S ⋅ E⃗

P: H = −µ S⃗
S ⋅ B⃗ + d S⃗

S ⋅ E⃗

T: H = −µ S⃗
S ⋅ B⃗ + d S⃗

S ⋅ E⃗

Any non-vanishing EDM of a non-deg.
(subatomic) particle violates P& T

Assuming CPT to hold, CP is violated as well
↪ subatomic EDMs: “rear window” to CP violation in early universe
Strongly suppressed in SM (CKM-matrix): ∣dn∣∼10−31e cm, ∣de ∣∼10−38e cm

Current bounds: ∣dn∣< 3⋅10−26e cm, ∣dp ∣< 8 ⋅10−25e cm, ∣de ∣< 1 ⋅10−28e cm

n: Baker et al. (2006), p prediction: Dimitriev & Sen’kov (2003)∗, e: Baron et al.(2013)†

∗ from ∣d199Hg ∣ < 3.1 ⋅ 10−29e cm bound of Griffith et al. (2009) † from polar ThO: ∣dThO ∣ ≲ 10−21e cm

backAndreas Wirzba 47 40



Instanton amplitudes

Since Ga
µνG̃aµν = ∂µKµ is a total derivative,

LQCD = θ̄ g2
s

32π2
1
2ε
µνρσGa

µνGa
ρσ

is irrelevant in perturbation theory.

Non-perturbatively, large gauge transformations (instantons) exist:

∫
R4

d4xE
1

32π2
GG̃ = integer

Some amplitudes depend on the periodic angle parameter

θ̄ = θ̄ + 2π ∶

Aθ ∝ e−SE ∝ e
− ∫ d4xE(

1
8g2

s
(G±G̃)2

∓(
8π2

g2
s
∓iθ̄) 1

32π2 GG̃)
∝ e

−
8π2

g2
s (µ)

±iθ̄

Weak coupling g2
s (µ)≪1: instanton amplitudes exponentially small.

For strong coupling g2
s (µ) ∼ 8π2, no suppression

backAndreas Wirzba 48 40



Helioscopy R. Battesti et al., Springer Lect. Notes Phys. 741 (2008)

Helioscopy

Principle: Time-reversed Primakoff effect, a + γvirt → γ.
most sensitive for 10−5 eV ≤ ma ≤ 1 eV
Depends on field B, length L, transfered momentum q = ma/2Eγ .
+Depends on Solar Models (minor corrections)

Vergis (Uni Bonn) The Axion Seminar Talk, January 2015 20 / 36

Time-reversed Primakoff effect: a + γvirtual → γ

most sensitive for 10−5 eV ≤ ma ≤ 1 eV

depends on field B, length L, transferred momentum q = ma/2E

and solar models

CAST experiment (CERN Axion Solar Telescope)

ma < 1.17 eV (intersecting the KSVZ band)

Next generation: IAXO (International Axion Oberservatory)@CERN

back
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Halioscopy R. Battesti et al., Springer Lect. Notes Phys. 741 (2008)
Microwave Cavity Experiments

Most sensitive detectors for CDM of axions (µeV ≤ ma ≤ meV )
Metalic conductor acting as cavity for photons (Primakoff process)
Tunable cavity for resonance, v = (ma/2π)[1 +O(10−6)]
Signal not only info on mass, but also virial distribution of
thermalized axions in our galaxy.
Vergis (Uni Bonn) The Axion Seminar Talk, January 2015 22 / 36

Search for galactic axions via Primakoff effect: a + γvirtual → γ

Tunable cavity search for microwave resonances

Most sensitive detectors for CDM axions (µeV ≲ ma ≲ meV)

ADMX (Axion Dark Matter eXperiment) @University of Washington

sensitivity to KVSZ axions between 1.9µeV ≲ ma ≲ 3.3, µeV

still on-going (ADMX II) back
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Supernovae (SN1987a) G.G. Raffelt, Springer Lect. Notes Phys. 741 (2008)

Supernovae

Axions emitted by Nucleon Bremsstrahlung NN → NNa , depending
on gaNN .
Energy-loss rate εa . 1019 erg g−1 s−1

Neutrino burst duration (late-time signal)

Vergis (Uni Bonn) The Axion Seminar Talk, January 2015 26 / 36

Axions emitted by nucleon Bremsstrahlung NN → NNa

– depends therefore on gaNN

Constraints:
energy loss rate εaxion ≲ 1019erg g−1s−1

Neutrino burst duration
back
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