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Spontaneous Symmetry Breaking in QCD and Chiral
Dynamics

Exercises

1. Consider the QCD Lagrangian

LQCD =
∑

f=u,d,s,
c,b,t

q̄f (iD/−mf )qf −
1

2
Trc(GµνGµν),

where

Dµqf ≡ (∂µ + ig3Aµ)qf ,

Gµν ≡ ∂µAν − ∂νAµ + ig3[Aµ,Aν ],

and

Aµ ≡
8∑

a=1

Aaµ
λc
a

2
.

The SU(3) gauge transformations of the second kind are defined as

qf 7→ q′f = exp

[
−i

8∑
a=1

Θa(x)
λc
a

2

]
qf = U [Θ(x)]qf ,

Aµ 7→ UAµU
† +

i

g3
∂µUU †.

(a) Show that Dµqf transforms as qf .

(b) Verify Gµν 7→ UGµνU
† Hint: U †U = 1.

(c) Verify that LQCD is invariant under the gauge transformations of the second kind.

2. Consider the projection operators

PR =
1

2
(1+ γ5), PL =

1

2
(1− γ5),

where the indices R and L refer to right-handed and left-handed, respectively. Using the
properties

γ†
5 = γ5, γ2

5 = 1,

verify the following properties:

PR = P †
R, PL = P †

L, PR + PL = 1, P 2
R = PR, P 2

L = PL, PRPL = PLPR = 0.

3. Consider the extreme relativistic positive-energy solution with three-momentum p⃗,

u(p⃗,±) ≈
√
E

(
χ±

±χ±

)
≡ u±(p⃗ ),



where we assume that the spin in the rest frame is either parallel or antiparallel to the
direction of the momentum

σ⃗ · p̂χ± = ±χ±.

In the standard representation of Dirac matrices we find

PR =
1

2

(
12×2 12×2

12×2 12×2

)
, PL =

1

2

(
12×2 −12×2

−12×2 12×2

)
.

Show that
PRu+ = u+, PLu+ = 0, PRu− = 0, PLu− = u−.

4. We have defined the left- and right-handed fields as

qL = PLq, qR = PRq,

q̄R = q†Rγ0 = q†P †
Rγ0 = q†PRγ0 = q†γ0PL = q̄PL,

q̄L = q̄PR.

Show that

q̄Γiq =

{
q̄RΓ1qR + q̄LΓ1qL for Γ1 ∈ {γµ, γµγ5}
q̄RΓ2qL + q̄LΓ2qR for Γ2 ∈ {1, γ5, σµν} .

Hint: Make use of {Γ1, γ5} = 0 and [Γ2, γ5] = 0 as well as the properties of the projection
operators derived in Exercise 2.

5. Express the quark mass matrix

M =

 mu 0 0
0 md 0
0 0 ms


in terms of the λ matrices λ0, λ3, and λ8.

6. Consider the Lagrangian

L(Φ1,Φ2,Φ3) =
1

2
∂µΦi∂

µΦi −
m2

2
ΦiΦi −

λ

4
(ΦiΦi)

2,

where m2 < 0 and λ > 0. The Lagrangian has an internal O(3) symmetry. Determine
the minimum of the potential

V(Φ1,Φ2,Φ3) =
m2

2
ΦiΦi +

λ

4
(ΦiΦi)

2.

Express the Lagrangian in terms of the fields Φ1, Φ2, and η, where η + v = Φ3 and

v =
√
−m2/λ.

7. Consider the potential of Exercise 6 with an additional small term, explicitly breaking
the symmetry,

V(Φ1,Φ2,Φ3) =
m2

2
ΦiΦi +

λ

4
(ΦiΦi)

2 + aΦ3,

where λ > 0, m2 < 0 and a > 0. Determine the new minimum ⟨Φ⃗⟩ up to and including

first order in a by using the ansatz ⟨Φ⃗⟩ = Φ⃗0+aΦ⃗1+O(a2). Determine the corresponding
extremal value of the potential to first order in a.



8. Consider the parameterization

U(x) = exp

(
i
ϕ(x)

F0

)
, ϕ =

8∑
a=1

λaϕa ≡


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K−

√
2K̄0 − 2√

3
η

 ,

where the ϕa are Hermitian fields and F0 ≈ 93 MeV. Make use of the Gell-Mann matrices
and express the physical fields in terms of the Cartesian components, e.g.,

π+(x) =
1√
2
[ϕ1(x)− iϕ2(x)].

9. Consider the Lagrangian

L2 =
F 2
0

4
Tr
(
∂µU∂µU †

)
+

F 2
0

4
Tr
(
χU † + Uχ†

)
,

where

χ = 2B0

m̂ 0 0
0 m̂ 0
0 0 ms


︸ ︷︷ ︸

M

.

The matrix U is given by

U(x) = exp

(
i
ϕ(x)

F0

)
, ϕ =

8∑
a=1

λaϕa ≡


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K−

√
2K̄0 − 2√

3
η

 .

Expand the mass term to second order in the fields and determine the mass squares of
the Goldstone bosons.

10. Under charge conjugation fields describing particles are mapped on fields describing an-
tiparticles, i.e., π0 7→ π0, η 7→ η, π+ ↔ π−, K+ ↔ K−, K0 ↔ K̄0.

(a) What does that mean for the matrix

ϕ =


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K−

√
2K̄0 − 2√

3
η

?

(b) Using ATBT = (BA)T show by induction (AT )
n
= (An)T . In combination with (a)

show that U = exp(iϕ/F0)
C7→ UT .

(c) Under charge conjugation the external fields transform as

vµ 7→ −vTµ , aµ 7→ aTµ , s 7→ sT , p 7→ pT .

Derive the transformation behavior of rµ = vµ + aµ, lµ = vµ − aµ, χ = 2B0(s + ip),
and χ†.

(d) Using (b) and (c) show that the covariant derivative of U under charge conjugation
transforms as

DµU 7→ (DµU)T .



(e) Show that

L2 =
F 2
0

4
Tr[DµU(DµU)†] +

F 2
0

4
Tr(χU † + Uχ†)

is invariant under charge conjugation. Note that (AT )
†
= (A†)

T
and Tr(AT ) =

Tr(A).

(f) As an example, show the invariance of the L3 term of L4 under charge conjugation:

L3Tr
[
DµU(DµU)†DνU(DνU)†

]
.

Hint: At the end you will need (DµU)† = −U †DµUU † and U †DµUU † = −(DµU)†.

11. We will investigate the reaction γ(q) + π+(p) → γ(q′) + π+(p′) at lowest order in the
momentum expansion [O(p2)].

(a) Consider the first term of L2 and substitute

rµ = lµ = −eQAµ, Q =


2
3

0 0
0 −1

3
0

0 0 −1
3

 , e > 0,
e2

4π
≈ 1

137
,

where Aµ is a Hermitian (external) electromagnetic field. Show that

DµU = ∂µU + ieAµ[Q,U ],

(DµU)† = ∂µU † + ieAµ[Q,U †].

Using the substitution U ↔ U †, show that the resulting Lagrangian consists of terms
involving only even numbers of Goldstone boson fields.

(b) Insert the result of (a) into L2 and verify

F 2
0

4
Tr[DµU(DµU)†] =

F 2
0

4
Tr[∂µU∂µU †]

−ieAµ
F 2
0

2
Tr[Q(∂µUU † − U †∂µU)]

−e2AµAµF
2
0

4
Tr([Q,U ][Q,U †]).

Hint: U∂µU † = −∂µUU † and ∂µU †U = −U †∂µU .
The second term describes interactions with a single photon and the third term with
two photons.

(c) Using U = exp(iϕ/F0) = 1+ iϕ/F0−ϕ2/(2F 2
0 )+ · · ·, identify those interaction terms

which contain exactly two Goldstone bosons:

LA−2ϕ
2 = −eAµ

i

2
Tr(Q[∂µϕ, ϕ]),

L2A−2ϕ
2 = −1

4
e2AµAµTr([Q, ϕ][Q, ϕ]).

(d) Insert ϕ of Exercise 8. Verify the intermediate steps

([∂µϕ, ϕ])11 = 2(∂µπ+π− − π+∂µπ− + ∂µK+K− −K+∂µK−),

([∂µϕ, ϕ])22 = 2(∂µπ−π+ − π−∂µπ+ + ∂µK0K̄0 −K0∂µK̄0),

([∂µϕ, ϕ])33 = 2(∂µK−K+ −K−∂µK+ + ∂µK̄0K0 − K̄0∂µK0),



[Q, ϕ] =
√
2

 0 π+ K+

−π− 0 0
−K− 0 0

 ,

[Q, ϕ][Q, ϕ] = −2

 π+π− +K+K− 0 0
0 π−π+ π−K+

0 K−π+ K−K+

 .

Now show

LA−2ϕ
2 = −Aµie(∂

µπ+π− − π+∂µπ− + ∂µK+K− −K+∂µK−),

L2A−2ϕ
2 = e2AµAµ(π+π− +K+K−).

(e) The corresponding Feynman rules read

LA−2ϕ
2 ⇒ vertex for γ(q, ϵ) + π±(p) → π±(p′) : ∓ieϵ · (p+ p′),

L2A−2ϕ
2 ⇒ vertex for γ(q, ϵ) + π±(p) → γ(q′, ϵ′) + π±(p′) : 2ie2ϵ′∗ · ϵ,

and analogously for charged kaons. An internal line of momentum p is described by
the propagator i/(p2−M2+ i0+). Determine the Compton scattering amplitude for
γ(q, ϵ) + π+(p) → γ(q′, ϵ′) + π+(p′):

p p+q p’

q’q q’

p p’ p

q q’

p’p-q’

q

What is the scattering amplitude for γ(q, ϵ) + π−(p) → γ(q′, ϵ′) + π−(p′)?

(f) Verify gauge invariance in terms of the substitution q → ϵ.

(g) Verify the invariance of the matrix element under the substitution (q, ϵ) ↔ (−q′, ϵ′∗)
(photon crossing).

12. Consider the Lagrangian

L2 =
F 2

4
Tr
(
∂µU∂µU †

)
+

F 2

4
Tr
(
χU † + Uχ†

)
in SU(2) with

χ = 2B

(
m 0
0 m

)
︸ ︷︷ ︸

M

and U given by

U(x) = exp

(
i
ϕ(x)

F

)
, ϕ =

3∑
a=1

τaϕa ≡
(

π0
√
2π+

√
2π− −π0

)
.

(a) Show that L2 contains only even powers of ϕ,

L2 = L2ϕ
2 + L4ϕ

2 + · · · .



(b) Since L2 does not produce a three-Goldstone-boson vertex, the scattering of two
Goldstone bosons is described by a 4-Goldstone-boson contact interaction. Verify

L4ϕ
2 =

1

24F 2

[
Tr([ϕ, ∂µϕ]ϕ∂

µϕ) +BTr(Mϕ4)
]

by using the expansion

U = 1 + i
ϕ

F
− 1

2

ϕ2

F 2
− i

6

ϕ3

F 3
+

1

24

ϕ4

F 4
+ · · · .

Remark: An analogous formula would be obtained in SU(3) with the corresponding
replacements.

(c) Show that the interaction Lagrangian can be written as

L4π
2 =

1

6F 2

(
ϕ⃗ · ∂µϕ⃗ϕ⃗ · ∂µϕ⃗− ϕ⃗2∂µϕ⃗ · ∂µϕ⃗

)
+

M2
π

24F 2
(ϕ⃗2)2,

where M2
π = 2Bm at O(p2).

(d) Derive the Feynman rule for πa(pa) + πb(pb) → πc(pc) + πd(pd):

M = i

[
δabδcd

s−M2
π

F 2
+ δacδbd

t−M2
π

F 2
+ δadδbc

u−M2
π

F 2

]

− i

3F 2

(
δabδcd + δacδbd + δadδbc

)
(Λa + Λb + Λc + Λd) ,

where we introduced Λk = p2k −M2
π .

(e) Using four-momentum conservation, show that the so-called Mandelstam variables
s = (pa + pb)

2, t = (pa − pc)
2, and u = (pa − pd)

2 satisfy the relation

s+ t+ u = p2a + p2b + p2c + p2d.

(f) The T -matrix element (M = iT ) of the scattering process πa(pa)+πb(pb) → πc(pc)+
πd(pd) can be parameterized as

T ab;cd(pa, pb; pc, pd) = δabδcdA(s, t, u) + δacδbdA(t, s, u) + δadδbcA(u, t, s),

where the function A satisfies A(s, t, u) = A(s, u, t). Since the pions form an isospin
triplet, the two isovectors of both the initial and final states may be coupled to
I = 0, 1, 2. For mu = md = m the strong interactions are invariant under isospin
transformations, implying that scattering matrix elements can be decomposed as

⟨I ′, I ′3|T |I, I3⟩ = T IδII′δI3I′3 .

For the case of ππ scattering the three isospin amplitudes are given in terms of the
invariant amplitude A by

T I=0 = 3A(s, t, u) + A(t, u, s) + A(u, s, t),

T I=1 = A(t, u, s)− A(u, s, t),

T I=2 = A(t, u, s) + A(u, s, t).

For example, the physical π+π+ scattering process is described by T I=2. Other
physical processes are obtained using the appropriate Clebsch-Gordan coefficients.
Evaluating the T matrices at threshold, one obtains the s-wave ππ-scattering lengths

T I=0|thr = 32πa00, T I=2|thr = 32πa20,



where the subscript 0 refers to s wave and the superscript to the isospin. (T I=1|thr
vanishes because of Bose symmetry). Using the results of (d) verify the famous
current-algebra prediction for the scattering lengths

a00 =
7M2

π

32πF 2
π

= 0.156, a20 = − M2
π

16πF 2
π

= −0.045,

where we replaced F by Fπ and made use of the numerical values Fπ = 93.2 MeV
and Mπ = 139.57 MeV.

Conclusion: Given that we know the value of F , the Lagrangian L2 predicts the
low-energy scattering amplitude.

(g) You may repeat the above steps with a different parameterization of U which is very
popular in SU(2) calculations:

U(x) =
1

F
[σ(x) + iτ⃗ · π⃗(x)], σ(x) =

√
F 2 − π⃗2(x).

Physical results do not depend on the parameterization. On the other hand, inter-
mediate building blocks such as Feynman rules with off-mass-shell momenta depend
on the parameterization chosen.

(h) You may also consider the SU(3) calculation which proceeds analogously. Using the
properties of the Gell-Mann matrices show that

L4ϕ
2 = − 1

6F 2
0

ϕa∂µϕbϕc∂
µϕdfabefcde

+
(2m+ms)B0

36F 2
0

(ϕaϕa)
2 +

(m−ms)B0

12
√
3F 2

0

(
2

3
ϕ8ϕaϕbϕcdabc + ϕaϕaϕbϕcdbc8

)
.

The following 5 exercises are related to dimensional regularization. If you are familiar
with this issue you may proceed to Exercise 28.

13. Consider polar coordinates in 4 dimensions:

l1 = l cos(θ1), θ1 ∈ [0, π],

l2 = l sin(θ1) cos(θ2), θ2 ∈ [0, π],

l3 = l sin(θ1) sin(θ2) cos(θ3), θ3 ∈ [0, 2π],

l4 = l sin(θ1) sin(θ2) sin(θ3),

where l =
√
l21 + l22 + l23 + l24. The transition from four-dimensional Cartesian coordinates

to polar coordinates introduces the determinant of the Jacobi or functional matrix

J =


∂l1
∂l

· · · ∂l1
∂θ3

...
...

∂l4
∂l

· · · ∂l4
∂θ3

 .

(a) Show that
det(J) = l3 sin2(θ1) sin(θ2)

and thus
dl1dl2dl3dl4 = l3dl sin2(θ1) sin(θ2)dθ1dθ2dθ3︸ ︷︷ ︸

dΩ

.



(b) Verify ∫
dΩ = 2π2.

14. Show by induction ∫ π

0
sinm(θ)dθ =

√
πΓ

(
m+1
2

)
Γ
(
m+2
2

)
for m ≥ 1.

Hints: Make use of partial integration. Γ(1) = 1, Γ(1/2) =
√
π, xΓ(x) = Γ(x+ 1).

15. We consider the integral

I =
∫ d4k

(2π)4
i

k2 −M2 + i0+
.

Introduce a ≡
√
k⃗2 +M2 and define

f(k0) =
1

[k0 + (a− i0+)][k0 − (a− i0+)]
.

In order to determine
∫∞
−∞ dk0f(k0) as part of the calculation of I, we consider f in the

complex k0 plane and choose the paths

γ1(t) = t, a = −∞, b = +∞ and γ2(t) = Reit, a = 0, b = π.

(a) Using the residue theorem determine∮
C
f(z)dz =

∫
γ1
f(z)dz + lim

R→∞

∫
γ2
f(z)dz = 2πiRes[f(z),−(a+ i0+)].

Verify ∫ ∞

−∞
dk0f(k0) =

−iπ√
k⃗2 +M2 − i0+

.

(b) Using (a) show∫ d4k

(2π)4
i

k2 −M2 + i0+
=

1

2

∫ d3k

(2π)3
1√

k⃗2 +M2 − i0+
.

(c) Now consider the generalization from 4 → n dimensions:∫ dn−1k

(2π)n−1

1√
k⃗2 +M2

, k⃗2 = k2
1 + k2

2 + · · ·+ k2
n−1.

We can omit the −i0+, because the integrand no longer has a pole. Introduce polar
coordinates in n− 1 dimensions and perform the angular integration to obtain∫ dn−1k

(2π)n−1

1√
k⃗2 +M2

=
1

2n−2
π−n−1

2
1

Γ
(
n−1
2

) ∫ ∞

0
dr

rn−2

√
r2 +M2

.

(d) Using the substitutions t = r/M and y = t2 show

∫ ∞

0
dr

rn−2

√
r2 +M2

=
1

2
Mn−2

Γ
(
n−1
2

)
Γ
(
1− n

2

)
Γ
(
1

2

)
︸ ︷︷ ︸√

π

.



Hint: Make use of the Beta function

B(x, y) =
∫ ∞

0

tx−1dt

(1 + t)x+y
=

Γ(x)Γ(y)

Γ(x+ y)
.

(e) Now put the results together to obtain∫ dnk

(2π)n
i

k2 −M2 + i0+
=

1

(4π)
n
2
Mn−2Γ

(
1− n

2

)
,

which agrees with the result of the lecture.

16. Show that in dimensional regularization

∫ dnk

(2π)n
(k2)p

(k2 −M2 + i0+)q
= i(−)p−q 1

(4π)
n
2
(M2)p+

n
2
−q

Γ
(
p+ n

2

)
Γ
(
q − p− n

2

)
Γ
(
n
2

)
Γ(q)

.

We first assume M2 > 0, p = 0, 1, · · ·, q = 1, 2, · · ·, and p < q. The last condition is used
in the Wick rotation to guarantee that the quarter circles at infinity do not contribute to
the integral.

(a) Show that the transition to the Euclidian metric produces the factor i(−)p−q.

(b) Perform the angular integration in n dimensions.

(c) Perform the remaining radial integration using

∫ ∞

0

ln−1dl

(l2 +M2)α
=

1

2
(M2)

n
2
−α

Γ
(
n
2

)
Γ
(
α− n

2

)
Γ(α)

.

What do you have to substitute for n− 1 and α, respectively?

Now put the results together. The analytic continuation of the right-hand side is used to
also define expressions with (integer) q ≤ p in dimensional regularization.

17. Consider the complex function

f(z) = az = exp(ln(a)z) ≡ u(x, y) + iv(x, y), a ∈ R+, z = x+ iy.

(a) Determine u(x, y) and v(x, y). Note that u, v ∈ C∞(R2).

(b) Determine ∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y. Show that the Cauchy-Riemann differ-
ential equations ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x are satisfied. The complex
function f is thus holomorphic in C. We made use of this fact when discussing
I(M2, µ2, n) as a function of the complex variable n in the context of dimensional
regularization.

18. For the calculation of the Goldstone boson self energies at O(p4) we need the interaction
Lagrangian

Lint = L4ϕ
2 + L2ϕ

4 .

Consider the Lagrangians of Gasser and Leutwyler and of Gasser, Sainio, and Švarc,
respectively:

LGL
4 =

l1
4

{
Tr[DµU(DµU)†]

}2
+

l2
4
Tr[DµU(DνU)†]Tr[DµU(DνU)†]

+
l3
16

[
Tr(χU † + Uχ†)

]2
+

l4
4
Tr[DµU(Dµχ)† +Dµχ(D

µU)†]



+l5

[
Tr(fR

µνUfµν
L U †)− 1

2
Tr(fL

µνf
µν
L + fR

µνf
µν
R )

]
+i

l6
2
Tr[fR

µνD
µU(DνU)† + fL

µν(D
µU)†DνU ]

− l7
16

[
Tr(χU † − Uχ†)

]2
+
h1 + h3

4
Tr(χχ†) +

h1 − h3

16

{[
Tr(χU † + Uχ†)

]2
+
[
Tr(χU † − Uχ†)

]2
− 2Tr(χU †χU † + Uχ†Uχ†)

}
−2h2Tr(f

L
µνf

µν
L + fR

µνf
µν
R ).

LGSS
4 =

l1
4

{
Tr[DµU(DµU)†]

}2
+

l2
4
Tr[DµU(DνU)†]Tr[DµU(DνU)†]

+
l3 + l4
16

[
Tr(χU † + Uχ†)

]2
+

l4
8
Tr[DµU(DµU)†]Tr(χU † + Uχ†)

+l5Tr(f
R
µνUfµν

L U †) + i
l6
2
Tr[fR

µνD
µU(DνU)† + fL

µν(D
µU)†DνU ]

− l7
16

[
Tr(χU † − Uχ†)

]2
+

h1 + h3 − l4
4

Tr(χχ†)

+
h1 − h3 − l4

16

{[
Tr(χU † + Uχ†)

]2
+
[
Tr(χU † − Uχ†)

]2
−2Tr(χU †χU † + Uχ†Uχ†)

}
− 4h2 + l5

2
Tr(fL

µνf
µν
L + fR

µνf
µν
R ).

Setting the external fields to zero and inserting χ = 2Bm, derive the terms involving two
pion fields.

Remark: The bare and the renormalized low-energy constants li and lri are related by

li = lri + γi
R

32π2
,

where R = 2/(n− 4)− [ln(4π) + Γ′(1) + 1] and

γ1 =
1

3
, γ2 =

2

3
, γ3 = −1

2
, γ4 = 2, γ5 = −1

6
, γ6 = −1

3
, γ7 = 0.

In the SU(2) sector one often uses the scale-independent parameters l̄i which are defined
by

lri =
γi

32π2

[
l̄i + ln

(
M2

µ2

)]
, i = 1, · · · , 6,

where M2 = B(mu + md). Since ln(1) = 0, the l̄i are proportional to the renormalized
coupling constant at the scale µ = M .

19. Using isospin symmetry, at O(p4) the pion self energy is of the form

Σba(p
2) = δab(A+Bp2).

The constants A and B receive a tree-level contribution from L4 and a one-loop contri-
bution from L2 (see Fig. 1). Using the results of exercises 12, 15, and 18, derive the
expressions of Table 1 for the self-energy coefficients.

Using

M2
π,4 =

M2
π,2 + A

1−B
= M2

π,2(1 +B) + A+O(p6),



p, a p, b
4

p, a p, b

k, c

2

Figure 1: Self-energy diagrams at O(p4). Vertices derived from L2n are denoted by 2n in the
interaction blobs.

Table 1: Self-energy coefficients and wave function renormalization constants. I denotes the
dimensionally regularized integral I = I(M2, µ2, n) = M2

16π2

[
R + ln

(
M2

µ2

)]
+ O(n − 4), R =

2
n−4

− [ln(4π) + Γ′(1) + 1], M2 = 2Bm.

A B Z

GL, exponential −1
6
M2

F 2 I + 2l3
M4

F 2
2
3

I
F 2 1 + 2

3
I
F 2

GL, square root 3
2
M2

F 2 I + 2l3
M4

F 2 − I
F 2 1− I

F 2

GSS, exponential −1
6
M2

F 2 I + 2(l3 + l4)
M4

F 2
2
3

I
F 2 − 2l4

M2

F 2 1 + 2
3

I
F 2 − 2l4

M2

F 2

GSS, square root 3
2
M2

F 2 I + 2(l3 + l4)
M4

F 2 − I
F 2 − 2l4

M2

F 2 1− I
F 2 − 2l4

M2

F 2

derive the squared pion mass at O(p4):

M2
π,4 = M2 − l̄3

32π2F 2
M4 +O(M6),

where M2 = 2Bm.

20. You may repeat the calculations in SU(3) to obtain the masses of the Goldstone boson
octet.

Remark: Conceptionally the calculation is completetly analogous to the SU(2) calculation.
Due to the SU(3) algebra and the fact that the loop integrals contain different mass scales
it is now considerably more work.

21. Using

B =
8∑

a=1

λaBa√
2

=


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 ,

express the physical fields in terms of Cartesian fields.



22. Consider the lowest-order πN Lagrangian

L(1)
πN = Ψ̄

iD/− ◦
mN +

◦
gA
2
γµγ5uµ

Ψ.

Assume that there are no external fields, lµ = rµ = v(s)µ = 0, so that

Γµ =
1

2
(u†∂µu+ u∂µu

†),

uµ = i(u†∂µu− u∂µu
†).

By expanding

u = exp

i τ⃗ · ϕ⃗
2F

 = 1 + i
τ⃗ · ϕ⃗
2F

− ϕ⃗ 2

8F 2
+ · · · ,

derive the interaction Lagrangians containing one and two pion fields, respectively.

23. Consider the SU(2)-valued function

K(L,R, U) =
√
RUL†−1

R
√
U.

Verify the homomorphism property

K(L1, R1, R2UL†
2)K(L2, R2, U) = K((L1L2), (R1R2), U).

24. Consider
uµ ≡ i

[
u†(∂µ − irµ)u− u(∂µ − ilµ)u

†
]
.

Using
u′ = VRuK

† = KuV †
L

show that, under SU(2)L × SU(2)R × U(1)V , uµ transforms as

uµ 7→ KuµK
†.

25. Consider the two-flavor Lagrangian

Leff = L(1)
πN + Lπ

2 ,

where

L(1)
πN = Ψ̄

iD/− ◦
mN +

◦
gA
2
γµγ5uµ

Ψ,

Lπ
2 =

F 2

4
Tr[DµU(DµU)†] +

F 2

4
Tr(χU † + Uχ†).

(a) We would like to study this Lagrangian in the presence of an electromagnetic field
Aµ. For that purpose we need to insert for the external fields

rµ = lµ = −e
τ3
2
Aµ, v(s)µ = −e

2
Aµ.

Derive the interaction Lagrangians LγNN , LπNN , LγπNN , and Lγππ. Here, the nomen-
clature is such that LγNN denotes the interaction Lagrangian describing the inter-
action of an external electromagnetic field with a single nucleon in the initial and
final states, respectively. For example, LγπNN must be symbolically of the type
Ψ̄ϕAΨ. Using Feynman rules, these four interaction Lagrangians would be sufficient
to describe pion photoproduction of the nucleon, γN → πN , at lowest order in
ChPT.



(b) Now we would like to describe the interaction with a massive charged weak boson
W±

µ = (W1µ ∓ iW2µ)/
√
2,

rµ = 0, lµ = − g√
2
(W+

µ T+ + h.c.),

where h.c. refers to the Hermitian conjugate and

T+ =

(
0 Vud

0 0

)
.

Here, Vud denotes an element of the Cabibbo-Kobayashi-Maskawa quark-mixing ma-
trix,

|Vud| = 0.97425± 0.00022.

At lowest order in perturbation theory, the Fermi constant is related to the gauge
coupling g and the W mass as

GF =
√
2

g2

8M2
W

= 1.16637(1)× 10−5 GeV−2.

Derive the interaction Lagrangians LWNN and LWπ.

(c) Finally, we consider the neutral weak interaction

rµ = e tan(θW )
τ3
2
Zµ,

lµ = − g

cos(θW )

τ3
2
Zµ + e tan(θW )

τ3
2
Zµ,

v(s)µ =
e tan(θW )

2
Zµ,

where θW is the weak angle, e = g sin(θW ). Derive the interaction Lagrangians LZNN

and LZπ.

26. Consider the three-flavor Lagrangian

L(1)
MB = Tr

[
B̄ (iD/ −M0)B

]
− D

2
Tr
(
B̄γµγ5{uµ, B}

)
− F

2
Tr
(
B̄γµγ5[uµ, B]

)
in the absence of external fields:

DµB = ∂µB +
1

2
[u†∂µu+ u∂µu

†, B],

uµ = i(u†∂µu− u∂µu
†).

Using

B =
Baλa√

2
, B̄ =

B̄bλb√
2
,

show that the interaction Lagrangians with one and two mesons can be written as

L(1)
ϕBB =

1

F0

(dabcD + ifabcF )B̄bγ
µγ5Ba∂µϕc,

L(1)
ϕϕBB = − i

2F 2
0

fabefcdeB̄bγ
µBaϕc∂µϕd.

Hint: u†∂µu+ u∂µu
† = u†∂µu− ∂µuu

† = [u†, ∂µu].



27. Consider the general parameterization of the invariant amplitude M = iT for the process
πa(q) +N(p) → πb(q′) +N(p′):

T ab(p, q; p′, q′) = ū(p′)

{
1

2
{τ b, τa}︸ ︷︷ ︸
δab

A+(ν, νB) +
1

2
[τ b, τ a]︸ ︷︷ ︸

−iϵabcτ
c

A−(ν, νB)

+
1

2
(q/+ q′/ )

[
δabB+(ν, νB)− iϵabcτ

cB−(ν, νB)
] }

u(p),

with the two independent scalar kinematical variables

ν =
s− u

4mN

=
(p+ p′) · q

2mN

=
(p+ p′) · q′

2mN

,

νB = − q · q′

2mN

=
t− 2M2

π

4mN

,

where s = (p + q)2, t = (p′ − p)2, and u = (p′ − q)2 are the usual Mandelstam variables
satisfying s+ t+ u = 2m2

N + 2M2
π .

(a) Show that
s−m2

N = 2mN(ν − νB), u−m2
N = −2mN(ν + νB).

Hint: Make use of four-momentum conservation, p+q = p′+q′, and of the mass-shell
conditions, p2 = p′2 = m2

N , q
2 = q′2 = M2

π .

Derive the threshold values

ν|thr = Mπ, νB|thr = − M2
π

2mN

.

(b) Show that from pion-crossing symmetry

T ab(p, q; p′, q′) = T ba(p,−q′; p′,−q)

we obtain for the crossing behavior of the amplitudes

A+(−ν, νB) = A+(ν, νB), A−(−ν, νB) = −A−(ν, νB),

B+(−ν, νB) = −B+(ν, νB), B−(−ν, νB) = B−(ν, νB).

(c) The physical πN channels may be expressed in terms of the isospin eigenstates as

|pπ+⟩ = |3
2
,
3

2
⟩,

|pπ0⟩ =

√
2

3
|3
2
,
1

2
⟩+ 1√

3
|1
2
,
1

2
⟩,

|nπ+⟩ =
1√
3
|3
2
,
1

2
⟩ −

√
2

3
|1
2
,
1

2
⟩,

|pπ−⟩ =
1√
3
|3
2
,−1

2
⟩+

√
2

3
|1
2
,−1

2
⟩,

|nπ0⟩ =

√
2

3
|3
2
,−1

2
⟩ − 1√

3
|1
2
,−1

2
⟩,

|nπ−⟩ = |3
2
,−3

2
⟩.



Using
⟨I ′, I ′3|T |I, I3⟩ = T IδII′δI3I′3 ,

derive the expressions for ⟨pπ0|T |nπ+⟩, ⟨pπ0|T |pπ0⟩, and ⟨nπ+|T |nπ+⟩. Verify that

⟨pπ0|T |pπ0⟩ − ⟨nπ+|T |nπ+⟩ = 1√
2
⟨pπ0|T |nπ+⟩.

(d) Consider the so-called pseudoscalar pion-nucleon interaction

LPS
πNN = −igπNΨ̄γ5τ⃗ · ϕ⃗Ψ.

The Feynman rule for both the absorption and the emission of a pion with Cartesian
isospin index a is given by

gπNγ5τa.

Derive the invariant amplitude for the s- and u-channel contributions.

28. In the following we will calculate the mass mN of the nucleon up to and including order
O(q3). As in the case of pions, the physical mass is defined through the pole of the full
propagator (at /p = mN for the nucleon). The (unrenormalized) propagator is given by

S0(p) =
1

/p−m0 − Σ0(/p)
≡ 1

/p−m− Σ(/p)
, (1)

where m0 refers to the bare mass, m is the nucleon mass in the chiral limit, and Σ0(/p)
denotes the nucleon self energy as a function of /p (note that /p/p = p2). To determine the
mass, the equation

mN −m0 − Σ0(mN) = mN −m− Σ(mN) = 0 (2)

has to be solved, so the task is to calculate the nucleon self energy Σ(/p).

(a) The πN Lagrangian at order O(q2) is given by

L(2)
πN = c1Tr(χ+)Ψ̄Ψ− c2

4m2
Tr(uµuν)(Ψ̄DµDνΨ+H. c.)

+
c3
2
Tr(uµuµ)Ψ̄Ψ− c4

4
Ψ̄γµγν [uµ, uν ]Ψ + c5Ψ̄

[
χ+ − 1

2
Tr(χ+)

]
Ψ

+Ψ̄
[
c6
2
f+
µν +

c7
2
v(s)µν

]
σµνΨ.

Which of these terms contain only the nucleon fields and therefore give a contact
contribution to the self energy? Determine −iΣcontact(/p) from i⟨Ψ̄|L(2)

πN |Ψ⟩.
Remark: There are no contact contributions from the Lagrangian L(3)

πN .

(b) By using the expansion of L(1)
πN up to two pion fields from Assignment 12 verify the

following Feynman rules:1

�pk; a p01 −gA0

2F0

/kγ5τa

�pk; a p0k0; b1 1

4F 2
0

(/k + /k
′
)ϵabiτi

1Here, the subscripts 0 denote bare quantities.
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Figure 2: One-loop contributions to the nucleon self energy

There are two types of loop contributions at order O(q3), shown in Figure 2.

(c) Use the Feynman rules to show that the second diagram in Figure 2 does not con-
tribute to the self energy.

(d) Use the Feynman rules and the expressions for the propagators,

i∆π(p) =
i

p2 −M2 + i0+
,

iSN(p) = i
/p+m

p2 −m2 + i0+
,

to verify that in dimensional regularization the first diagram in Figure 2 gives the
contribution

−iΣloop(/p) = −i
3g2A0

4F 2
0

iµ4−n
∫ dnk

(2π)n
/k(/p−m− /k)/k

[(p− k)2 −m2 + i0+][k2 −M2 + i0+]
. (3)

(e) Show that the numerator can be simplified to

−(/p+m)k2 + (p2 −m2)/k −
[
(p− k)2 −m2

]
/k, (4)

which, when inserted in Eq. (3), gives

Σloop(/p) =
3g2A0

4F 2
0

{
−(/p+m)µ4−ni

∫ dnk

(2π)n
1

[(p− k)2 −m2 + i0+]

−(/p+m)M2µ4−ni
∫ dnk

(2π)n
1

[(p− k)2 −m2 + i0+][k2 −M2 + i0+]

+(p2 −m2)µ4−ni
∫ dnk

(2π)n
/k

[(p− k)2 −m2 + i0+][k2 −M2 + i0+]

−µ4−ni
∫ dnk

(2π)n
/k

[k2 −M2 + i0+]

}
. (5)

Hint: {γµ, γν} = 2gµν , {γµ, γ5} = 0, γ5γ5 = 1, k2 = k2 −M2 +M2.

(f) The last term in Eq. (5) vanishes since the integrand is odd in k. We use the following
convention for scalar loop integrals

IN ···π···(p1, · · · , q1, · · ·)

= µ4−ni
∫ dnk

(2π)n
1

[(k + p1)2 −m2 + i0+] · · · [(k + q1)2 −M2 + i0+] · · ·
.

To determine the vector integral use the ansatz

µ4−ni
∫ dnk

(2π)n
kµ

[(p− k)2 −m2 + i0+][k2 −M2 + i0+]
= pµC. (6)



Multiply Eq. (6) by pµ to show that C is given by

C =
1

2p2

[
IN − Iπ + (p2 −m2 +M2)INπ(−p, 0)

]
. (7)

Using the above convention the loop contribution to the nucleon self energy reads

Σloop(/p) = −3g2A0

4F 2
0

{
(/p+m)IN + (/p+m)M2INπ(−p, 0)

−(p2 −m2)
/p

2p2

[
IN − Iπ + (p2 −m2 +M2)INπ(−p, 0)

] }
.

(8)

The explicit expressions for the integrals are given by

Iπ =
M2

16π2

[
R + ln

(
M2

µ2

)]
,

IN =
m2

16π2

[
R + ln

(
m2

µ2

)]
,

INπ(p, 0) =
1

16π2

[
R + ln

(
m2

µ2

)
− 1

+
p2 −m2 +M2

p2
ln
(
M

m

)
+

2mM

p2
F (Ω)

]
,

(9)

where

R =
2

n− 4
− [ln(4π) + Γ′(1) + 1],

Ω =
p2 −m2 −M2

2mM
,

and

F (Ω) =


√
Ω2 − 1 ln

(
−Ω−

√
Ω2 − 1

)
, Ω ≤ −1,√

1− Ω2 arccos(−Ω), −1 ≤ Ω ≤ 1,√
Ω2 − 1 ln

(
Ω +

√
Ω2 − 1

)
− iπ

√
Ω2 − 1, 1 ≤ Ω .

(g) The result for the self energy contains divergences as n → 4 (the terms proportional
to R), so it has to be renormalized. For convenience, choose the renormalization
parameter µ = m. The M̃S renormalization can be performed by simply dropping
the terms proportional to R and by replacing all bare coupling constants (c10, gA0, F0)

with the renormalized ones, now indicated by a subscript r. The M̃S renormalized
self energy contribution then reads

Σloop
r (/p) = −3g2Ar

4F 2
r

{
(/p+m)M2IrNπ(−p, 0)

−(p2 −m2)
/p

2p2

[
(p2 −m2 +M2)IrNπ(−p, 0)− Irπ

] }
,

(10)



where the superscript r on the integrals means that the terms proportional to R have
been dropped. Using the definition of the integrals, show that Eq. (10) contains
a term of order O(q2). What does the presence of this term tell you about the
applicability of the M̃S scheme in baryon ChPT?

Hint: What chiral order did the power counting assign to the diagram from which
we calculated Σloop?

(h) We can now solve Eq. (2) for the nucleon mass,

mN = m+ Σcontact
r (mN) + Σloop

r (mN)

= m− 4c1rM
2 + Σloop

r (mN). (11)

We have mN − m = O(q2). Since our calculation is only valid up to order O(q3),
determine Σloop

r (mN) to that order. Check that you only need an expansion of IrNπ,
which, using

arccos (−Ω) =
π

2
+ · · · ,

verify to be

IrNπ =
1

16π2

(
−1 +

πM

m
+ · · ·

)
. (12)

Show that this yields

mN = m− 4c1rM
2 +

3g2ArM
2

32π2F 2
r

m− 3g2ArM
3

32πF 2
r

. (13)

(i) The solution to the power counting problem is the observation that the term violating
the power counting (the third on the right of Eq. (13)) is analytic in small quantities
and can thus be absorbed in counter terms. In addition to the M̃S scheme we have
to perform an additional finite renormalization. Rewrite

c1r = c1 + δc1 (14)

in Eq. (13) and determine δc1 so that the term violating the power counting is
absorbed, which then gives the final result for the nucleon mass at order O(q3)

mN = m− 4c1M
2 − 3g2AM

3

32πF 2
. (15)

All quantities appearing in Eq. (15) are now in the extended on-mass-shell (EOMS)
scheme. For a detailed discussion of renormalization and power counting in mani-
festly Lorentz-invariant baryon chiral perturbation theory see T. Fuchs, J. Gegelia,
G. Japaridze, and S. Scherer, Phys. Rev. D 68, 056005 (2003).


