

ELECTROWEAK VACUUM Lecture 1: General Picture

V Ferrara International School Niccolo' Cabeo 2014

Mariano Quirós

Institució Catalana de Recerca i Estudis Avançats (ICREA), and IFAE Barcelona (Spain)

May 19-23, 2014

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

GIM mechanism

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The outline of these lectures is

- Lecture 1: General Picture of the Standard Model of EW interactions
- Lecture 2: Experimental Precision Data and Higgs Data
- Lecture 3: Theoretical Constraints from the Higgs discovery
- Lecture 4: Beyond the Standard Model

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

GIM mechanism

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

OUTLINE

The outline of Lecture 1 is

General Picture

- Standard Model overview
- Electroweak breaking
- Higgs and Goldstone bosons
- Fermion gauge interactions
- Yukawa interactions
- Neutral currents
- Charged currents and CKM mixing
- GIM mechanism

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outline

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

STANDARD MODEL OVERVIEW

 The Standard Model (SM) is a gauge theory based on the group

Gauge group

 $SU(3)\otimes SU(2)\otimes U(1)_Y$

- SU(3) describes the strong interactions (QCD) ⇒ S.
 Scherer's lectures
- Since the gauge interactions conserve chirality we can decompose fermions as

$$f = f_L + f_R$$
, $f_{L,R} = P_{L,R}f$, $P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$

- The SM choice was to place f_L in SU(2) doublets and f_R in SU(2) singlets
- One can instead replace f_R by

$$f_R \rightarrow f_L^c = C \overline{f}^T$$
, where C=charge conjugation matrix

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

They appear in (at least) three generations

SM fermions

$$\begin{bmatrix} \nu_{i} \\ \ell_{i}^{-} \end{pmatrix}_{L} \\ \ell_{iR}^{-} \left[\ell_{iL}^{+}\right] \end{bmatrix} \begin{bmatrix} \left(\begin{array}{c} u_{i}^{\alpha} \\ d_{i}^{\alpha} \end{array} \right)_{L} \\ u_{iR}^{\alpha} \left[u_{iL}^{c} \right] d_{iR}^{\alpha} \left[d_{iL}^{c} \right] \end{bmatrix} \quad \begin{array}{c} \alpha = colors \\ i = generations \\ Q = T_{3} + Y \end{array}$$

 f_L doublets : $(1,2)_{-1/2} + (3,2)_{1/6}$

$$f_L^c \ singlets: \ (1,1)_1 + (\bar{3},1)_{-2/3} + (\bar{3},1)_{1/3}$$

The pure gauge boson part Lagrangian is

Electroweak gauge bosons Lagrangian

$$\begin{split} \mathcal{L}_{gauge} &= -\frac{1}{4} G_{\mu\nu a} G^{\mu\nu a} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathcal{L}_{GF} + \mathcal{L}_{FP} \\ G_{\mu\nu a} &\equiv \partial_{\mu} W_{\nu a} - \partial_{\nu} W_{\mu a} + g \epsilon_{abc} W_{\mu b} W_{\nu c} \\ F_{\mu\nu} &= \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} \end{split}$$

ELECTROWEAK VACUUM

Mariano Quirós

= colors

 $= T_3 + Y$

Standard Model overview

 To properly quantize the theory we need the Faddeev-Popov gauge fixing

Faddeev-Popov Lagrangian (symmetric phase)

$$\mathcal{L}_{GF+FP} = \frac{1}{2\xi} (\partial^{\mu} W_{\mu}^{a})^{2} + \frac{1}{2\xi'} (\partial^{\mu} B_{\mu})^{2} + \bar{c}^{a} (-\partial^{\mu} D_{\mu}^{ab}) c^{b}$$
$$D_{\mu}^{ab} = \partial_{\mu} \delta^{ab} + g \epsilon^{acb} W_{\mu}^{c}$$

 The interaction of gauge bosons with fermions is achieved in the gauge invariant Lagrangian

Fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{fer} &= i \sum_{f_L} \bar{f}_L \gamma^{\mu} (\partial_{\mu} - ig \frac{\sigma_a}{2} W_{\mu a} - ig' Y_{f_L} B_{\mu}) f_L \\ &+ i \sum_{f_R} \bar{f}_R \gamma^{\mu} (\partial_{\mu} - ig' Y_{f_R} B_{\mu}) f_R \end{aligned}$$

イロン 不通 とうほう イロン

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outline

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

ELECTROWEAK BREAKING

In the Standard Model the electroweak symmetry SU(2) ⊗ U(1) is spontaneously broken by the Higgs mechanism where an SU(2)_L doublet Higgs boson is needed

Higgs mechanism

$$H = \left(\begin{array}{c} \chi^+ \\ H^0 \end{array}\right)_{1/2}$$

$$\widetilde{H} = i\sigma_2 H^* = \begin{pmatrix} H^0 \\ -\chi^- \end{pmatrix}_{-1/2}$$
$$\mathcal{L}_{Higgs} = \left| (\partial_\mu - ig \frac{\sigma_a}{2} W_{\mu a} - ig' \frac{1}{2} B_\mu) H \right|^2 - V(H)$$

$$V(H) = -m^2|H|^2 + \lambda|H|^4$$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

 By minimization of the Higgs potential one obtains the VEV

$$\langle H \rangle = rac{v}{\sqrt{2}} \begin{pmatrix} 0\\1 \end{pmatrix}, \quad v = \sqrt{rac{m^2}{\lambda}}, \quad m_h^2 = 2\lambda v^2$$

• By replacing $H = \langle H \rangle + \hat{H}$ in \mathcal{L}_{Higgs} one obtains

$$\mathcal{L}_m = rac{v^2}{8} (-g^2 W_{\mu a} W^{\mu a} + 2gg' B_{\mu} W^{3\mu} - g'^2 B_{\mu} B^{\mu})$$

$$= -\frac{1}{4}g^2 v^2 W^+_{\mu} W^-_{\mu}$$
$$-\frac{1}{4}v^2 \left(\begin{array}{cc} W^{\mu}_3 & B^{\mu} \end{array} \right) \left(\begin{array}{cc} g^2 & -gg' \\ -gg' & g'^2 \end{array} \right) \left(\begin{array}{cc} W^3_{\mu} \\ B_{\mu} \end{array} \right)$$
$$W^{\pm}_{\mu} = \frac{W^1_{\mu} \pm i W^2_{\mu}}{\sqrt{2}}$$

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

The gauge boson mass spectrum is then

Gauge boson masses and relations

$$m_{W^{\pm}} = \frac{1}{2}gv; \quad m_Z = \frac{1}{2}\sqrt{g^2 + {g'}^2}v; \quad m_A = 0$$

$$Z_{\mu} = \cos \theta_{W} W_{\mu}^{3} - \sin \theta_{W} B_{\mu}; \quad A_{\mu} = \cos \theta_{W} W_{\mu}^{3} + \sin \theta_{W} B_{\mu}$$

$$\tan \theta_W = \frac{g'}{g}$$

 The mixing angle can be put in relation with gauge boson masses as

$$\sin^2\theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

The muon decay lifetime determines the relation

$$v^2 = \frac{1}{\sqrt{2}G_{\mu}} = (246.22 \text{ GeV})^2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outline

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

HIGGS AND GOLDSTONE BOSONS

We can parametric the Higgs field as

$$H(x) = e^{i\chi_a(x)\sigma^a/v} \left(\begin{array}{c} 0 \\ \frac{1}{\sqrt{2}}(v+h(x)) \end{array} \right)$$

• The unitary gauge is defined as $(\chi^a \rightarrow 0)$

$$H(x)
ightarrow e^{-i\chi_a(x)\sigma^a/\nu} H(x) = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \\ v+h(x) \end{array}
ight)$$

In the unitary gauge the Goldston bosons decouple
In the unitary gauge the gauge boson propagators are

$$\Delta^{\mu
u}_{VV}(q)=rac{-i}{q^2-m_V^2+i\epsilon}\left[g^{\mu
u}-rac{q^\mu q^
u}{m_V^2}
ight]$$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

GIM mechanism

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 It is more convenient to work in R_ξ gauge characterized by the GF lagrangian

$$\mathcal{L}_{\rm GF} = \frac{-1}{2\xi} \left[2(\partial^{\mu}W^+_{\mu} - \xi m_W \chi^+) (\partial^{\mu}W^-_{\mu} - \xi m_W \chi^-) \right]$$

$$+(\partial^{\mu}Z_{\mu}-\xi m_{Z}\chi^{0})^{2}+(\partial^{\mu}A_{\mu})^{2}]$$

• The propagators in
$$R_{\xi}$$
 gauge

R_{ξ} gauge

$$\begin{split} \Delta_{VV}^{\mu\nu}(q) &= \frac{-i}{q^2 - m_V^2 + i\epsilon} \left[g^{\mu\nu} + (\xi - 1) \frac{q^{\mu} q^{\nu}}{q^2 - \xi m_V^2} \right] \\ \Delta_{\chi^0 \chi^0}(q^2) &= \frac{i}{q^2 - \xi m_Z^2 + i\epsilon} \\ \Delta_{\chi^{\pm} \chi^{\mp}}(q^2) &= \frac{i}{q^2 - \xi m_W^2 + i\epsilon} \end{split}$$

コン 《母 》 《日 》 《日 》 《日 》 《 日) ろくの

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

- $\xi = 0$ is the Landau gauge
- $\xi = 1$ is the 't Hooft-Feynman gauge (the $q^{\mu}q^{\nu}$ term is absent
- $\xi \to \infty$ is the Unitary gauge.
- ▶ In gauge boson propagators the last term $(-q^{\mu}q^{\nu}/m_V^2)$ leads to very complicated cancellations in the invariant amplitudes involving the exchange of V bosons at high energies and, even worse, make the renormalization program very difficult to carry out, as the latter usually makes use of four-momentum power counting analyses of the loop diagrams.
- The Goldstone boson propagators vanish in the unitary gauge
- The Higgs propagator

$$\Delta_{hh}(q^2) = \frac{i}{q^2 - m_h^2 + i\epsilon}$$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

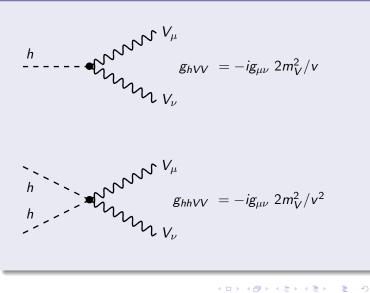
Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents


CKM mixing

GIM mechanism

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

The couplings of the Higgs bosons to gauge bosons

Higgs-gauge bosons

ELECTROWEAK VACUUM

Mariano Quirós

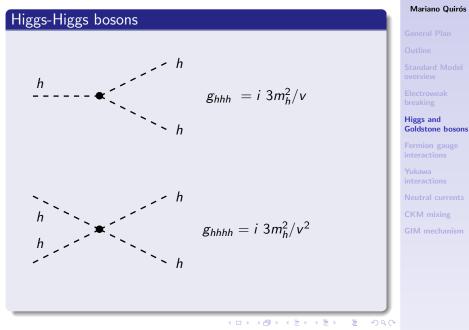
General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons


Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

The self-couplings of the Higgs bosons

ELECTROWEAK

VACUUM

FERMION GAUGE INTERACTIONS

Using the lagrangian \mathcal{L}_{fer} one obtains the interaction of fermions with gauge boson eigenvectors in the broken phase

• The weak isospin current of SU(2) is

$$J^{\mu}_{a} = \sum_{f_{L}} \bar{f}_{L} \gamma^{\mu} \frac{\sigma_{a}}{2} f_{L}$$

The hypercharge current is

$$J_Y^{\mu} = \sum_{f_L} \bar{f}_L \gamma^{\mu} Y_{f_L} f_L + \sum_{f_R} \bar{f}_R \gamma^{\mu} Y_{f_R} f_R$$

▶ They are coupled to gauge bosons (*W*, *Z*, *A*) as

$$g J^\mu_a W^\mu_a + g' J^\mu_Y B_\mu$$

with the decomposition

$$W^{3}_{\mu} = \cos \theta_{W} Z_{\mu} + \sin \theta_{W} A_{\mu};$$

$$B_{\mu} = -\sin \theta_{W} Z_{\mu} + \cos \theta_{W} A_{\mu}$$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions Neutral current: CKM miving

• W^{\pm}_{μ} couple to the weak charged currents

Charged currents lagrangian

$$\mathcal{L}_{int}^{CC} = rac{g}{\sqrt{2}}(W^+_\mu J^\mu_- + W^-_\mu J^\mu_+) \ J^\mu_\pm = rac{1}{2}(J^\mu_1 \mp i J^\mu_2)$$

The electromagnetic interactions are

Electromagnetic lagrangian

$$\mathcal{L}_{int}^{EM} = e J_{\mu}^{EM} A^{\mu}$$

 $J_{\mu}^{EM} = \sum_{f} [\bar{f}_{L} \gamma_{\mu} Q f_{L} + \bar{f}_{R} \gamma_{\mu} Q f_{R}]$
 $Q = T_{3} + Y; \quad e = rac{gg'}{\sqrt{g^{2} + g'^{2}}}$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outline

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions Neutral currents CKM mixing GIM mechanism

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Neutral current lagrangian

$$\mathcal{L}_{int}^{NC}=\sqrt{g^2+g'^2}J^0_\mu Z^\mu$$

 $J^0_\mu=J^3_\mu-\sin^2 heta_WJ^{EM}_\mu$

Notice that the neutral currents

Neutral currents

$$\propto \bar{f}_{L,R} \gamma^{\mu} f_{L,R}$$

and charged currents

Charged currents

$$\propto \bar{u}_{L,R} \gamma^{\mu} d_{L,R}$$

are all flavor-diagonal in the interaction basis

ELECTROWEAK VACUUM

Mariano Quirós

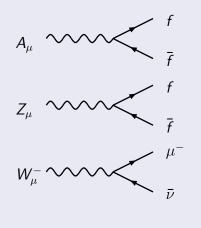
General Plan

Outline

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons


Fermion gauge interactions

Yukawa interactions Neutral currents CKM mixing

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Diagrammatically the Feynman rules are

$$\frac{\frac{ie}{sc}}{-Q_f s^2 P_R} [(T_f^3 - Q_f s^2) P_l]$$

$$\frac{ie}{s\sqrt{2}}\gamma_{\mu}P_{L}$$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

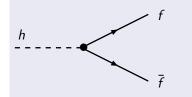
Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions Neutral currents CKM mixing GIM mechanism

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙


YUKAWA INTERACTIONS

Fermion masses and mixing appear from the Yukawa interactions

Quarks Yukawa lagrangian

$$egin{aligned} \mathcal{L}_{Y} &= -Y_{ij}^{U}(ar{u}_{L},ar{d}_{L})_{i}\left(egin{aligned} ar{H}^{0} \ -\chi^{-} \end{array}
ight)u_{Rj} \ &-Y_{ij}^{D}(ar{u}_{L},ar{d}_{L})_{i}\left(egin{aligned} \chi^{+} \ H^{0} \end{array}
ight)d_{Rj}+h.c. \end{aligned}$$

Higgs fermion interactions

$$g_{Hff} = i m_f / v$$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking


Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents CKM mixing GIM mechanism

Goldstone bosons fermion interactions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

ELECTROWEAK VACUUM Mariano Quirós

 After electroweak breaking it gives rise to the mass terms

Mass lagrangian

$$egin{aligned} \mathcal{L}_{mass} &= -rac{v}{\sqrt{2}}ar{u}_L^i Y_{ij}^U u_R^j + h.c. \ &-rac{v}{\sqrt{2}}ar{d}_L^i Y_{ij}^D d_R^j + h.c. \end{aligned}$$

 We can diagonalize the bilinear mass terms by unitary transformations

$$u_{L,R} \rightarrow V_{L,R}^{u} u_{L,R}; \quad d_{L,R} \rightarrow V_{L,R}^{d} d_{L,R}$$

interaction \rightarrow mass eigenstates basis

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak preaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

CKM mixing

・ロット (四)・ (川)・ (日)・ (日)・

The mass Lagrangian becomes

Mass Lagrangian

$$\mathcal{L}_{mass}
ightarrow -rac{v}{\sqrt{2}} ar{u}_L V_L^{u\dagger} Y^U V_R^u u_R + h.c. \ -rac{v}{\sqrt{2}} ar{d}_L V_L^{d\dagger} Y^D V_R^d d_R + h.c.$$

With

$$V_L^{u\dagger} Y^U V_R^u \propto diag(m_u, m_c, m_t)$$

$$V_L^{d\dagger} Y^D V_R^d \propto diag(m_d, m_s, m_b)$$

• Where now the states $u_{L,R}$, $d_{L,R}$ are mass eigenstates

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

NEUTRAL CURRENTS IN MASS EIGENBASIS

 Neutral currents which were flavor-diagonal in the interaction basis remain flavor-diagonal in the mass eigenstate basis

Neutral currents in mass eigenstates

$$\bar{f}_{L,R}\gamma^{\mu}f_{L,R} \to \bar{f}_{L,R}V_{L,R}^{f\dagger}\gamma^{\mu}V_{L,R}^{f}f_{L,R} = \bar{f}_{L,R}\gamma^{\mu}f_{L,R}$$

This ensures that

FCNC will not be generated at tree level

In agreement with experimental data

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

GIM mechanism

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

CHARGED CURRENTS IN MASS EIGENBASIS: CKM MIXING

 Charged currents which were flavor-diagonal in the interaction basis do not remain flavor diagonal in the mass eigenstate basis

Charged currents in mass eigenstates

$$W^+_\mu \bar{u}_L \gamma^\mu d_L o W^+_\mu \bar{u}_L \gamma^\mu V^{u\dagger}_L V^d_L d_L = W^+_\mu \bar{u}_L \gamma^\mu V_{CKM} d_L$$

 $V_{CKM} = V^{u\dagger}_L V^d_L$

 V_{CKM} is the Cabbibo-Kobayashi-Maskawa matrix defined as

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outlin

Standard Model overview

Electroweak breaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing

A standard parametrization for the CKM matrix is

$$V_{CKM} =$$

A good approximation is

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Where
$$\lambda = s_{12}$$
, $s_{23} = A\lambda^2$, $s_{13}e^{i\delta} = A\lambda^3(\rho + i\eta)$

- $\lambda \simeq \sin \theta_C = 0.23$
- The experimental values for the V_{CKM} entries can be found in RPP

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outline

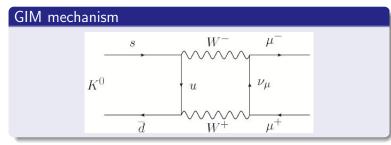
.....

Standard Model overview

Electroweak preaking

Higgs and Goldstone bosons

Fermion gauge interactions


Yukawa interactions

Neutral currents

CKM mixing

THE GIM MECHANISM

► The GIM mechanism explains the smallness of processes as $K_L \rightarrow \mu^+ \mu^-$ as given by the diagrams in the figure

- ► CKM mixing (V^{*}_{ud}V_{us}) leads to the three diagrams where the vertical line is (u, c, t).
- In the limit of exact flavor symmetry the three diagrams cancel by virtue of unitarity

$$\sum_{i=u,c,t} V_{is} V_{id}^* = 0$$

Exercise: Estimate the suppression of previous process and a suppression of previous process

ELECTROWEAK VACUUM

Mariano Quirós

General Plan

Outline

Standard Model overview

Electroweak preaking

Higgs and Goldstone bosons

Fermion gauge interactions

Yukawa interactions

Neutral currents

CKM mixing