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Outline

> Brief intro to Axions & Axion cosmology

> Other light weakly interacting stuff & the search for them

> An example: the ALPS-II experiment

> More on selected ultralight Dark Matter setups

> Take home
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First things first: Niccolo Cabeo SCHOOL

Disclaimer

> I am no expert in all I say (e.g. cosmology) → refs
> school → profit for everybody (including me ;-) )

Babette Döbrich | International Niccolo Cabeo School | May 21st 2014 | Page 3



Axions in brief see, e.g. Weinberg QFT Vol. II, & Raffelt: Stars as lab. & 0807.3125

graphic taken from
http://oldwww.phys.washington.edu/users/wcgriff/romalis/EDM/

> through non-trivial vacuum: QCD
embodies the so-called Θ term:
LΘ ∼ ΘαsGaµνG̃a,µν cf. S. Scherer lecture

> with electroweak contribution
Θ̄ = Θ + ArgdetM , M quark mass
matrix

> physical observable: Neutron EDM
( ~Ea ~Ba is CP violating)

> via Lamor precession:
|dn| . 10−26ecm, but naively much
larger e/2mN ∼ 10−14ecm

> → Θ̄ . 10−10 → naturalness
problem (Θ̄ is a sum and Mij 6= 0)
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Axions in brief see, e.g. Weinberg QFT Vol. II, & Raffelt: Stars as laboratory & 0807.3125

[Figure taken from Kolb/Turner]

ma = mumd
mu+md

mπfπ
fa

[good reading: 9506229 Sikivie’s Pooltable]

> make Θ̄ ≡ a(x)/fa dynamical and
it relaxes to zero through potential
Peccei & Quinn, 77

> can be realized if a global U(1)PQ
is spontaneously broken, the axion
is the phase (Goldstone boson) of
this symmetry Weinberg, Wilczek, 78

> originally: fa ∼ electroweak,
quickly excluded e.g. astrophysical

> ‘invisible axion models’: KSVZ (no
tree level coupl to e−) and DFSZ

> m ∼ 1/fa → pseudo-Goldstone
boson (explicit symmetry breaking)

> couple to photons through quark 4
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Axion cosmology in brief see, e.g. Kolb & Turner: Early universe

[Figure taken from 1311.5341][Figure taken from Hertzberg et al ’08]

red line fa = HI/(2π)

when HI known → small prefered region

0 0.5 1 1.5 2 2.5

a
θ

-0.5

0

0.5

1

1.5

aθ

aN

a
N

-10

-5

0

5

10

15

20

25

12
10×

)-11/T (Gev

0 0.5 1 1.5 2 2.5

-1110

-10
10

-9
10

-8
10

-710

-6
10

-5
10

-410

-3
10

-210

-110

1

10

a

0
 / mam

a
0

3 H / m

ma < 3H

axion is frozen

ma ≈ 3H

axion starts rolling,

axion number Na

is conserved

turns into pressureless matter.

[Figure taken from Wantz/Shellard ’10] > Θ̈ + 3HΘ̇ +m2(T )Θ = 0 →
EOS non-rel DM

> low m Axion → CDM
candidate (lifetime > age of
universe) misalignment

> DM abundance dep. on
Θinitial (free in principle)

> crucial: phase transition fa
can in principle occur before
or after inflation HI/(2π)

> omitted: axionic strings,
domain walls

> isocurvature, HI from
BICEP2 → constraints
(literature manifold)
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Pseudoscalar coupling plane: Axions and ALPs
[excerpt pseudoscalar γ coupling plane]
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> Focus on gφγ
Lint,PS ∼ gφγφ FµνF̃µν

> PS-Photon coupling
many constrains already,
external field needed
∼ gφ~E ~B

> QCD Axion, ma & g
tied, is a hard nut to
crack, coupling tiny

> (m, g)-plane: axion-like
particles (other broken
sym, extra DOFs strings)

> astrophysics indic.:
TeV γs → next slide
[1302.1208] + White
Dwarf cooling hint
[1204.3565],[1304.7652]
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‘TeV transparency’

Pic: courtesy of M.Meyer

e.g. [1302.1208]

EBL acts as ‘wall’!

EBL=extragalactic background light

background light

ALPs can traverse!
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Other weakly interacting slim particles (WISPs)
Physics beyond SM needed
DM, DE, QG...

[courtesy of J.Jaeckel]

[taken from]

>>>>> axions and ALPs dubbed
‘WISPs’ [1311.0029]

> typically class of experiments

> Hidden/Dark Photons
L ∼ χFµνXµν + m2

γ̃

2 XµX
µ

→ extra U(1) with mass,
experimentally no need for
B-fields, oscillation process,
Stückelberg or Hidden Higgs

> HPs e.g. from string
scenarios [1206.0819], vector DM
possible [1201.5902]

> minicharged particles
Lint ∼ eψ̄ /Aψ + ehh̄ /Xh,
minicharge Q = χeh/e
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experimental focus: photon-WISP vertices

x x

x x

> paradigmatic example with B-field:
Axion/ALP, MCPs

> paradigmatic example without
B-field: hidden photon

> more? chameleons [1306.4326] & light
scalar particles of massive gravity
(connected to Dark Energy?)

> experimental access through
essentially four basic categories:
differ in origin of the observed
photon

> in the following, focus on part of
ALP parameter space for clarity,
pointing out just some examples
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1) WISP/Axion Limits from astro/cosmo

x x

e.g. astrophysical processes

virtual intermediate particles

real intermediate particles

> exploit astro/cosmo phenomena,
e.g. stellar evolution, CMB
imprints... [→ G.G. Raffelt]

> , access to disjunct & remote
parts of parameter space

> / indirect probe, sometimes
model dependent

> paradigmatic: SN γ-burst 1987
excludes part of the TeV
transparency hint

> HB stars (stellar evolution) wide
parameter range (stars would cool
too quickly)

> polarization of quasars e.g. [1309.6114],
recall L ∼ gφ~E ~B (also labrelevant)

> ...
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2) WISPs/Axions from our sun (Helioscopes)

x x

sun laboratory

see cast.web.cern.ch/CAST

> natural photon source: sun
→ Helioscope [Sikivie ’83]

> paradigmatic CERN Axion
Solar Telescope CAST
[arXiv:1209.6347]

> , broadband, rather
sensitive, reaches QCD
axion band

> / dependent on flux at
source (nontunable and
slightly model dep.)

> CAST at ‘peak sensi’:
future: International Axion
Observatory, ∼ 5T, 20m
IAXO? [1302.3273,1401.3233] 2 OOM
improv. g ∼ 10−12GeV−1
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from Science: Vol. 342 no. 6158 pp. 552-555

‘vs’

In the age of the 27-kilometer-long atom smasher and the
50,000-tonne underground particle detector, the Axion Dark
Matter Experiment (ADMX) hardly looks grand enough to make a
major discovery. A modest 4-meter-long metal cylinder, it dangles
from a wall here at the University of Washingtons Center for
Experimental Nuclear Physics and Astrophysics, as shiny and
inscrutable as a tuna hung up for display. A handful of physicists
tinker with the device, which they are preparing to lower into a
silolike hole in the floor. The lab itself, halfway down a bluff on the
edge of campus, is far from the bustle of the university. Yet ADMX
researchers will soon perform one of the more important and
promising experiments in particle physics.Babette Döbrich | International Niccolo Cabeo School | May 21st 2014 | Page 14



3) Dark Matter Axions/WISPs (Haloscopes)

taken from [0807.3125]

ADMX status cf [1403.5332]

x

Dark Matter laboratory

taken from learner.org

> Axions & WISPs → dark
matter candidate →
Haloscope [Sikivie ’83] resonant
technique fcavity ∼ maxion

> paradigmatic for axions:
ADMX and ADMX-HF
> , VERY sensitive
> / so far very narrow band
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>>>>>>> Axions & WISPs → dark
matter candidate →
Haloscope [Sikivie ’83] resonant
technique fcavity ∼ maxion

> paradigmatic for axions:
ADMX and ADMX-HF
> , VERY sensitive
> / so far very narrow band
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4) “Homemade” WISPs/ pure laboratory setups

x x

laboratory laboratory

(also QED)

B

B

Spiegel

Spiegel

Strahlteiler
Quelle

Detektor

B

dL

[ 0904.0216]

>>>>>>> light-shining-through-a wall,
polarization measurements [PVLAS,

1301.4918] & interferometry

> ideal for WISP-search: LSW
> , full control over WISP

production, least model-dep.
> / “until soon” non-competitive

> paradigmatic for optical LSW:
ALPS-I [arXiv:1004.1313] (cf. also
OSQAR CERN & FERMILAB setups)

> microwave-through-the-wall
experiments at CERN [arXiv:1310.8098]

(sensitive at lower mass, “inherent
resonant regeneration” (will be
explained later))
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Comprehensive ALP parameter space

whole story see e.g. Essig et al. [arXiv:1311.0029]
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(Almost) Comprehensive HP parameter space

plot misses interesting pheno region µ g-2

whole story see e.g. [arXiv:1311.0029]
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Comprehensive MCP parameter space

whole story see e.g. [arXiv:1311.0029]
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Outline

> Brief intro to Axions & Axion cosmology

> Other light weakly interacting stuff & the search for them

> An example: the ALPS-II experiment

> More on selected ultralight Dark Matter setups

> Take home
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ALPS-I (2010) and upgrades towards ALPS-II

laser
hut L

hera magnet

wall
detector

Phys. Lett. B 689, 149 (2010)

Any Light
Particle Search I

Any Light
Particle Search II

Fabry Perot ↗
resonator (= electronics)

before “wall”

9m, 5T
HERA
dipole

↖ Resonator
after “wall”

Upgrades from ALPS-I to ALPS-II

x x

B−field

1) more photons → enhanced
probability

2) better single photon
detection

3) More (magnetic) length

1) coupled cavities → resonant
regeneration (photon
self-interference)

2) Transition Edge Sensor -
superconducting edge

3) more HERA dipoles (20)!
enhance length → tunnel
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Status [1309.3965] for Optics, Detector, Magnets
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> three stages ALPS-II a,b,c
(only c has magnets!)

> Optics: high-finesse cavity
1064nm across 10m

> Optics: locking principle with
infrared & green at 1m testsetup

> Detector: transition edge sensor
(superconductor at Tcrit) [1309.5024]

> Magnets: ‘magnet straightening’
(with spare magnets!) working just
fine
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Status [1309.3965] for Optics, Detector, Magnets
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Status [1309.3965] for Optics, Detector, Magnets

Dipol in Hall 55;  ex-ALPS I Dipol     
                                Quench current [A]
unchanged  dipole 
August 2011                  5920
September 2012  
straightened dipole
                                         6072
                                         6056

Current for 5.3 T: 5690A ( base line ALPS II)

25.9.2012

>> three stages ALPS-II a,b,c
(only c has magnets!)

> Optics: high-finesse cavity
1064nm across 10m

> Optics: locking principle with
infrared & green at 1m testsetup

> Detector: transition edge sensor
(superconductor at Tcrit) [1309.5024]

> Magnets: ‘magnet straightening’
(with spare magnets!) working just
fine
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Why straightening? Aperture constraints

>> PBPC = 5000 for IR,
PBRC = 40000 for IR

> pipe aperture limits PB due
to clipping

> large aperture for ALPS-IIa
and b (HERA straight)

> ALPS-IIc → effective
aperture 35mm limits to
4+4 dipoles (not enough) at
proposed PB but “true”
aperture larger (55mm)

> reestablish “true aperture”
with pressure props
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Outline

> Brief intro to Axions & Axion cosmology

> Other light weakly interacting stuff & the search for them

> An example: the ALPS-II experiment

> More on selected ultralight Dark Matter setups

> Take home
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Dark Matter WISPs?

March → BICEP 2, can have sizable implications...
see also Hertzberg et al. [0807.1726] and MANY others

Too much isocurv. Wa � WDM=1 Too much isocurv. any Wa � WDM
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2 Π
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PRELIMINARY!!
BD, Payez, Ringwald

and for Hidden Photons... Jaeckel, Redondo, Ringwald... and certainly more

BUT theory is ‘flexible’, let’s do experiments!
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WISPDMX PI: ANDREI LOBANOV, more info: [1309.4170], funding by SFB 676 and PIER

x

Dark Matter laboratory > 208 MHz HERA proton
cavity as Haloscope

> phase 1 (ongoing) →
hidden photons search at
‘nominal cavity resonances’

> phase 2 → cavity tuning,
∼ 60% of 200-500 Mhz

> phase 3 → B field? HUGE
V! H1 (supra 1.15T),
Hermes (norm. cond. ∼1T),
CERN M1 (3T)

> add. problem: geometry
factor! (∠ B, A)

> not sensitive to QCD axions
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Further Haloscopes at higher masses?

Pic from ADMX homepage
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[Hertzberg et al]

> existing experiments
& ADMX HF leave
out high masses,
classical axion
window

> decouple resonant
frequency from V
[1110.2180], long
rectangular cavities?
perfect for dipoles

> under construction...
[Irastorza, Redondo; Gimeno, Gallego]

> problems: close mode
spacing... and more
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Further Haloscopes at higher masses?
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3rd life of HERA dipoles? w F. Schaefer, E. Kreysa (MPIfR) & more

laser
hut L

hera magnet

wall
detector

B

E

E

w

h

w ~ p i /md ~ p i /m

> magnets straightening
working & magnet ready at
test stand, 5.3 T, 27l volume

> waveguide H11 basic mode
in OFHC (copper) beam
pipe at ∼3.2 GHz? (limits
exist already)

> long term → rectangular
cavity inside?
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Finding U(1)’s of a Novel Kind @ desY (FUNKY)

3.6×3.6m!!

[with R.Engel (KIT), M.Kowalski (Berlin & DESY Zeuthen) and others]
supported by HAP, see [1311.5341]

ROUGHLY EXPECTED

>>>> faster but less sensitive:
broadband search w/o
resonant enhancement:
collect light at center of
reflecting sphere w or w/o
B-field Jaeckel/Redondo more

info:[1212.2970] and [1308.1103]

> first setup @ KIT with
AUGER spare in the visible
foreseen for mid/end 2014,

> expected sensitivity for
hidden photons (1.5-3) eV
down to χ . 10−12

> difficult with magnet... but
we’ll see
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Outline

> Brief intro to Axions & Axion cosmology

> Other light weakly interacting stuff & the search for them

> An example: the ALPS-II experiment

> More on selected ultralight Dark Matter setups

> Take home

Babette Döbrich | International Niccolo Cabeo School | May 21st 2014 | Page 30



Subjective physics and politics sum up

Theory and experiments for light & weakly coupled particles

> broken symmetries → potential for very light particles and
weakly interacting particles axions & WISPs (DM candidates)

> Axion well motivated, particularly DM. Other WISPs plausible
in BSM extensions, techniques are similar

> Experiments (non-comprehensive list): manifold,
interdisciplinary, fun :-)

Prospect

> Axion DM Q can be ‘definitely’ answered (if not Ωa � ΩDM ),
finite parameter space, WISP physics case could sharpen

> large funding in Korea for axions (KAIST), ADMX new data,
setups emerging in many places around the globe (depends on
LHC 14TeV & WIMP DM searches...)
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Thank you for your attention
current ALPS-II collaboration

TDR arXiv:1302.5647

Qs at any time
babette.doebrich@
desy.de

BSM - don’t miss!
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More? → Backup

Bonus material
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White Dwarf cooling [e.g. 1304.7652]

> White Dwarfs have no
nuclear energy source
(stabilized by electron
degeneracy)

> Axions with gea ∼ 10−13 fit
better the white dwarf
luminosity function

> rate of pulsation of
individual stars fits better
with axions

> ‘independent hints’

> Jeremy Heyl at LaB
workshop: not consistent
with his data? [1209.4901]
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TeV transparency [e.g. 1201.4711] M. Meyer, D. Horns et al

> fit spectral sample (left
from [e.g. 1201.4711]) in
optically thin region

> extrapolate into thick
region

> not ‘compatible with fit’
at ∼ 4 σ

> explanation through
secondary processes
difficult (cascade would
wash out the intrinsic
variability of the source)
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Detector requirements and TES working principle

↑

pic ad.: Miller Appl.Phys.Lett. 83/4

> Experimental needs
> low rates of single infrared

photons (<1/h)
> high quantum efficiency

(PIXIS: 1.2%)
> low background

> TES working principle

> TES = superconducting
absorber at transition T

> fiber → guide light there
> Photon absorption →

current change → pick up
by SQUID

> TES from NIST (and
AIST) coated e.g.
Tungsten (∼ 100mK) or
Ti/Au (∼ 200mK),
readout PTB
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Milli-Kelvin environment

↓ control rack

↓ cryostat
↓ leak detector

> ‘Entropy’ mK
environment
> dry (helium

confined) &
compact (only
water &
electricity)

> time at <100mk:
48h

> recharge time 1h

> working principle

> 4K pulse-tube
stage

> isothermal
magnetization,
adiabatic
demagnetization
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Magnet straightening in a (very small) nutshell

> howto
> force on cold mass

> pressure screws at lower
flanches

> pressure prop at middle
and ends

> requires modified
suspensions

> good to know

> first tests with “PR”
magnet (non-functional)

> real-life tests with ALPS-I
magnet (hall 55)

> ultimate setup: 24 spare
magnets at Reemtsma

> even reversible
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Magnet straightening in a (very small) nutshell

laser
hut L

hera magnet

wall
detector

Dipol in Hall 55;  ex-ALPS I Dipol     
                                Quench current [A]
unchanged  dipole 
August 2011                  5920
September 2012  
straightened dipole
                                         6072
                                         6056

Current for 5.3 T: 5690A ( base line ALPS II)

25.9.2012
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