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Integrated number of stars > l :

N(> l) =
1

3
n∗ω

(

L

4π

)3/2 1

l3/2

in term of magnitude (m = −2.5 log(l)+cste)

log(N(< m)) ∝ 0.6m + cste
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Integrated luminosity:

φ =

∫ +∞

0

dN

dl
ldl

l−3/2 makes the integral diverging!

Something wrong among:

◮ The universe is homogeneous

◮ Universe is static and eternal

◮ Geometry of space is Euclidian geometry
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Timescale for energy exhaust:
Order of magnitude for the Sun:

L⊙ ∼ 4 1033 erg/s

M⊙ ∼ 2 1033 g

Efficiency of nuclear reactions ǫ ∼ 0.007

τ ∼ ǫM⊙c
2

L⊙
=

Et

dEt

dt

∼ 3 1018s ∼ 1011 yr

=> the universe cannot remain identical for ever!
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“The universe is homogeneous on large scale”
Einstein cosmological principle

Can and should be tested from observations.

lim
R→∞

ρ(R) = cste

(necessary but not sufficient...)
From galaxies:

log(N(m)) ∝ 0.6m ?

Good indication.
Isotropy

+Copernic principle => homogeneity
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◮ this does not prejudge of the global shape of the universe:

Plane ? Sphere ? Torrus ?

3D Spherical universe: let’s start from 4D (x , y , z , u)

x2 + y2 + z2 + u2 = R2

using spherical coordinates r2 = x2 + y2 + z2

from dl2 = dx2 + dy2 + dz2 + du2 and u2 = R2 − r2 one gets:

dl2 = r2(dθ2 + sin2 θdφ2) +
dr2
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(
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Geometry

dl2 = r2(dθ2 + sin2 θdφ2) +
dr2

1−
(

r
R

)2
(spherical)

+ dr2 (flat)

+
dr2

1 +
(

r
R

)2
(hyperbolic)

The Robertson-Walker line element: r → r
R

ds2 = −c2dt2 + R(t)2[r2(dθ2 + sin2 θdφ2) +
dr2

1− kr2
]

with k = −1, 0,+1 accordingly to geometry.
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The Robertson-Walker line element: r = rR0

ds2 = −c2dt2 + a(t)2[r2(dθ2 + sin2 θdφ2) +
dr2

1− Kr2
]

with K =
k

R2
0

and a(t) =
R(t)

R0
.

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Physical cosmology
The universe on large scale

General Geometry

Three possible geometries:

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Physical cosmology
The universe on large scale

General Geometry

Three possible geometries:

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Physical cosmology
The universe on large scale

Topology

The local geometry of space (i.e. the value of k) does not prejudge
of the global shape of space i.e. its topology.

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Physical cosmology
The universe on large scale

Topology

The local geometry of space (i.e. the value of k) does not prejudge
of the global shape of space i.e. its topology.

-> The universe is always finite with k = +1.

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Physical cosmology
The universe on large scale

Topology

The local geometry of space (i.e. the value of k) does not prejudge
of the global shape of space i.e. its topology.

-> The universe is always finite with k = +1.
-> The universe could be finite even with k = 0,−1.

Alain Blanchard Cosmology: Basics
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Basic Principle

Trajectories of photons = null geodesics
Observer at (r = 0, θ, φ, t = t0)
emitting light source at (rS, θ = 0, φ = 0, tS)
r(t) be the trajectory of the photons emitted. As this trajectory is
a null geodesic, we have:

c2dt2 − R2(t)
dr2

1− kr2
= 0

i.e.
cdt

R(t)
=

dr√
1− kr2
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cdt

R(t)
=

∫ rS

0

dr

(1− kr2)1/2
= S−1

k (rS)

with:

Sk(u) =
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u ifk = 0
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General Mattig relation

relation rS − tS
∫ t0

tS

cdt

R(t)
=

∫ rS

0

dr

(1− kr2)1/2
= S−1

k (rS)

with:

Sk(u) =











sin(u) ifk = +1

u ifk = 0

sinh(u) ifk = −1

When the distance is small in front of R0 we just have:

S−1
k (r) ∼ r and l .h.s. ∼ cδt

R(t0)
≡ D

R(t0)

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Redshift and Distances

The Redshift

A source emitting at the frequency νS is observed at frequency ν0

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Redshift and Distances

The Redshift

A source emitting at the frequency νS is observed at frequency ν0

We consider the two trajectories of the light ray emitted at the
time tS and tS +

1
νS

arriving at t0 and t0 +
1
ν0

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Redshift and Distances

The Redshift

A source emitting at the frequency νS is observed at frequency ν0

We consider the two trajectories of the light ray emitted at the
time tS and tS +

1
νS

arriving at t0 and t0 +
1
ν0

The comoving coordinate rS of the source remains constant so:

S−1
k (rS) =

∫ t0

tS

cdt

R(t)
=

∫ t0+1/ν0

tS+1/νS

cdt

R(t)
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The Redshift (2)

so:

c

R(t0)

1

ν0
− c

R(tS)

1

νS
= 0

leading to the redshift z :

1 + z =
νs
ν0

=
λ0
λE

=
R0

RS
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What will be the observed time difference ∆t0 ?

∆t0
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= 1 + z
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The Redshift (3)

If the “distance” changes with time:

v =
∆l

∆t

and if :

∆λ

λ
=

v

c
(first order)

this could be qualified as a purely Doppler shift.

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Redshift and Distances

The proper distance

Distance obtained as a sum of rulers:

dl2 = ds2 = R(t)2
dr2

1− kr2

so that the proper distance is :

D =

∫ S

0
dl = R(t)S−1

k (rS)

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Redshift and Distances

The proper distance

Distance obtained as a sum of rulers:

dl2 = ds2 = R(t)2
dr2

1− kr2

so that the proper distance is :

D =

∫ S

0
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k (rS)
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Ḋ = ṘS−1
k (rS)
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v =
Ṙ
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ν0
νs

=
R(tS)

R(t0)
∼ R(t0) + Ṙ(tS − t0)

R(t0)

So that:
νS − ν0
νs

=
δν

ν
=

Ṙ

R
δt = H

D

c
=

v

c

so it is a Doppler shift.
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when r << 1 space can be regarded as being flat.
i.e. R(ts) ∼ R(t0) or

z ≪ 1

when z ≥ 1 this is not true anymore
A “distance measurement” needs a precise experimental procedure.
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Take a ruler : size d seen from epoch tS
Observer: (r = 0, 0, 0, t = t0)
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Energy going through a surface dA, during dt, in the frequency
range ν, ν + dν:

du = i(ν) dν dA dt dΩ

i : specific intensity.
In terms of the distribution function of photons:

du = f (p) p2 dp dΩ dA cdt pc

(p = hν/c)
so:

i(ν) ∝ f (p) p3
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Liouville’s theorem: f (p) is conserved during propagation, so:

i(ν)

p3
∝ i(ν)

ν3
= cste i.e. i(ν0) =

i(νS)

(1+ z)3

νS
ν0

= 1 + z =
dνS
dν0

Integrated surface brightness:

∫ +∞

0
i(ν0) dν0 =

1

(1 + z)4

∫ +∞

0
i(νS) dνS

test of expansion (Tolman, 1931; Sandage and Perulmuter, 1991)
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Telescope with diameter 2d observes a point source of luminosity L
2θ is the angle of the telescope seen from the source

d = R(t0) r θ

l : the apparent luminosity of the source

l = L
πθ2

4π

1

1 + z

1

1 + z

1

π d2

l =
L

4π(R(t0) r)2
1

(1 + z)2
=

L

4π D2
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Dlum = R(t0) r (1 + z)

= R(tS) r (1 + z)2
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This last relation is always valid.
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Distance along the line of sight

dl = cdt

1 + z = R0/R(t) one gets dz = −H(z)(1 + z)dt so:

dl = − c

H(z)

dz

1 + z

From RW, it is also:

dl = R(t)
dr√

1− kr2
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Volume element

dV = dΩ D2
ang dl

= −dΩ(R(tS) r)
2 c

H(z)

dz

1 + z

= dΩ (R(tS) r)
2R(tS)

dr√
1− kr2

→ useful for number counts.
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Describing gravity

Based on Einstein’s G.R.

◮ Rij − 1/2gijR = 8πGTij

◮ rest frame : Tij =









ρ
P

P
P









◮ Source of gravity : ρ+ 3P/c2

◮ Birkoff’s theorem : analog of Gauss theorem

For spherical distribution only ρ(r < R) matters for the solution within

r < R .

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Toward the EFL equations
Solutions
Some historical remarks
Summary at this point

Dynamics from Newtonian argument

Inside a sphere of Radius a
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Dynamics from Newtonian argument

Inside a sphere of Radius a

ä = g

Source is ρ+ 3P/c2:

ä = −GM

a2
= −4πG

3
(ρ+ 3P/c2)a (1)

Energy conservation
Et total energy of the sphere :

d(Et) = d(ρVc2) = −PdV

= c2(Vdρ+ ρdV ) = −PdV
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leading to :

ρ̇ = −(ρ+ P/c2)
V̇

V
= −3(ρ+ P/c2)

ȧ

a
(2)

(1) and (2) allow to eliminate P :

ä = −4πG

3
(ρ+ 3P/c2)a

ä = −4πG

3
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4πG

3
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leading to :

ρ̇ = −(ρ+ P/c2)
V̇

V
= −3(ρ+ P/c2)

ȧ

a
(2)

(1) and (2) allow to eliminate P :

ä = −4πG

3
(ρ+ 3P/c2)a

ä = −4πG

3
(3ρ+ 3P/c2)a+ 2

4πG

3
ρa

ä = +
4πG
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aρ̇

ȧ
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4πG
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multiplying by ȧ:
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multiplying by ȧ:

ȧä = +
4πG

3
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8πG
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Dynamics from Newtonian argument

multiplying by ȧ:

ȧä = +
4πG

3
a2ρ̇+

8πG

3
ρaȧ

(ȧ2)′ =

(

8πGa2ρ

3

)′

that is :

ȧ2 =
8πGa2ρ

3
+ cste

For R(t):
(

Ṙ

R

)2

=
8πGρ

3
− kc2

R2
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Equation of state

Solution -> needs an equation of state F (ρ,P) = 0

Notation : P = wρ

The density ρ reads:

ρ =
∑

i

∫

Ei

c2
f (pi )dpi

the pressure P :

P =
∑

i

∫

1

3

p2i
Ei

f (pi )dpi
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Equation of state

Two important regimes:
→ matter dominated: p << mc i.e. P = 0
ρ =

∫

m and g ∝ ρ
ρ̇ = −3ρȧ/a (a ∝ R) so :

ρa3 = cste

→ pressure (radiation) dominated:
p >> mc so ρ =

∫

p/c ... and P =
∫

1/3 p c ...

P =
1

3
ρc2

ρ̇ = −4ρȧ/a so :

ρa4 = cste
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Vacuum

Naively : ρv = 0 and Pv = 0

But take a box with vacuum in it:

d(Et) = d(ρvVc
2) = ρvc

2dV = −PvdV
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Vacuum

so we get the equation of state of vacuum:

Pv = −ρvc2

Or look for a fluid Lorentz invariant.
Introducing the cosmological constant:

Λ = 8πGρv
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Summary

Space is described by RW metric.
Einstein-Friedmann-Lemâıtre (EFL) equations:

(

Ṙ

R

)2

=
8πGρ

3
− kc2

R2
+

Λ

3
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Summary

Space is described by RW metric.
Einstein-Friedmann-Lemâıtre (EFL) equations:

(

Ṙ

R

)2

=
8πGρ

3
− kc2

R2
+

Λ

3

and

ρ̇ = −3

(

P

c2
+ ρ

)

Ṙ

R
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Summary

Space is described by RW metric.
Einstein-Friedmann-Lemâıtre (EFL) equations:

(

Ṙ

R

)2

=
8πGρ

3
− kc2

R2
+

Λ

3

and

ρ̇ = −3

(

P

c2
+ ρ

)

Ṙ

R

2
R̈

R
= −8πG

3
(ρ+ 3P/c2) +

2Λ

3
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Notations

H = Ṙ
R
, the Hubble parameter,

ΩM = Ω = 8πGρ
3H2 the density parameter,

q = − R̈R

Ṙ2
, the deceleration parameter,

Ωvac = Ωλ = λ = Λ
3H2 , the (reduced) cosmological constant,

Ωk = −α = − kc2

H2R2 , the curvature parameter.
Quantities are labeled by 0 when they are referred to their present
value: Ω0, q0, ...
E.F.L. :

Ωk +ΩM +Ωλ = 1
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ä = g = −GM

a2
and+ ρ a3 = cste

from this we have derived:
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ä = g = −GM

a2
and+ ρ a3 = cste

from this we have derived:

ȧ2 − 8π G ρ a2
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= ȧ2 − 2GM
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Newtonian theory!
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ä = g = −GM

a2
and+ ρ a3 = cste

from this we have derived:

ȧ2 − 8π G ρ a2

3
= ȧ2 − 2GM

a
= −k c2

This is exactly the equation of a test particle in the field of one mass in
Newtonian theory!

Ec + Ep = cste

Solutions:

◮ k = −1 unbound hyperbolic solution
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Matter domination area

ä = g = −GM

a2
and+ ρ a3 = cste

from this we have derived:

ȧ2 − 8π G ρ a2

3
= ȧ2 − 2GM

a
= −k c2

This is exactly the equation of a test particle in the field of one mass in
Newtonian theory!

Ec + Ep = cste

Solutions:

◮ k = −1 unbound hyperbolic solution

◮ k = 0 parabolic solution

◮ k = +1 bound elliptic solution
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Matter domination area: case k = 0 Λ = 0

Ṙ2 =
8π G ρ R2

3
and ρR3 = ρ0R

3
0

First Eq. implies:

Ω =
8π G ρ

3 H2
= 1 = Ω0

(present-day) critical density :

ρc =
3 H2

0

8π G
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Matter domination area: case k = 0 Λ = 0

Ṙ2 =
8π G ρ R2

3
and ρR3 = ρ0R

3
0

First Eq. implies:

Ω =
8π G ρ

3 H2
= 1 = Ω0

(present-day) critical density :

ρc =
3 H2

0

8π G

Second Eq. implies:

Ṙ2 =
8π G ρ0 R3

0

3 R
= H2

0

R3
0

R
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Matter domination area: case k = 0 Λ = 0

Ωm = 1 : Einstein-de Sitter solution. Solution:

R(t) = R0

(

3

2
H0 t

)2/3

= R0 (t/t0)
2/3

with :

t0 =
2

3
H−1
0 =

1√
6π G ρc
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Matter domination area: case k = 0 Λ = 0

Ωm = 1 : Einstein-de Sitter solution. Solution:

R(t) = R0

(

3

2
H0 t

)2/3

= R0 (t/t0)
2/3

with :

t0 =
2

3
H−1
0 =

1√
6π G ρc

This solution goes through 0 in the past...
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Matter domination area: case k = 0 Λ = 0

Ωm = 1 : Einstein-de Sitter solution. Solution:

R(t) = R0

(

3

2
H0 t

)2/3

= R0 (t/t0)
2/3

with :

t0 =
2

3
H−1
0 =

1√
6π G ρc

This solution goes through 0 in the past...
The solution has an “Initial” singularity.
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Ṙ

R

)2

=
8 π G ρ

3
− k c2

R2

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Toward the EFL equations
Solutions
Some historical remarks
Summary at this point

Initial singularity

2
R̈

R
= −8 π G

3
(ρ+ 3P/c2)

and :
(

Ṙ

R

)2

=
8 π G ρ

3
− k c2

R2

so if: (ρ+ 3P/c2) > 0 R will go through 0 (in the past) in a finite
time t0.
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Initial singularity

2
R̈

R
= −8 π G

3
(ρ+ 3P/c2)

and :
(

Ṙ

R

)2

=
8 π G ρ

3
− k c2

R2

so if: (ρ+ 3P/c2) > 0 R will go through 0 (in the past) in a finite
time t0.
There is a theorem more general than this.
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Initial singularity

2
R̈

R
= −8 π G

3
(ρ+ 3P/c2)

and :
(

Ṙ

R

)2

=
8 π G ρ

3
− k c2

R2

so if: (ρ+ 3P/c2) > 0 R will go through 0 (in the past) in a finite
time t0.
There is a theorem more general than this.

When R → 0 than
(

Ṙ
R

)2
∼ 8 π G ρ

3 i.e. Ω ∼ 1
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Behavior of Ω (matter and Λ = 0):

previous second Eq. implies −Ωk = Ω0 − 1 so :

H2 = H2
0 [Ω0(1 + z)3 + (1− Ω0)(1 + z)2]
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Behavior of Ω (matter and Λ = 0):

previous second Eq. implies −Ωk = Ω0 − 1 so :

H2 = H2
0 [Ω0(1 + z)3 + (1− Ω0)(1 + z)2]

so:
H2 = H2
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Behavior of Ω (matter and Λ = 0):

previous second Eq. implies −Ωk = Ω0 − 1 so :

H2 = H2
0 [Ω0(1 + z)3 + (1− Ω0)(1 + z)2]

so:
H2 = H2

0 (1 + z)2(1 + Ω0z)

and:

Ω(z) =
8π G ρ

3H2
=

8π G ρ0
3H2

0

(1 + z)3

(1 + z)2(1 + Ω0z)
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Behavior of Ω (matter and Λ = 0):

previous second Eq. implies −Ωk = Ω0 − 1 so :

H2 = H2
0 [Ω0(1 + z)3 + (1− Ω0)(1 + z)2]

so:
H2 = H2

0 (1 + z)2(1 + Ω0z)

and:

Ω(z) =
8π G ρ

3H2
=

8π G ρ0
3H2

0

(1 + z)3

(1 + z)2(1 + Ω0z)

so:

Ω(z) = Ω0
(1 + z)

(1 + Ω0z)
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Mattig relation Λ = 0

Along a light ray:

dr2

1− kr2
=

c2dt2

R2(t)
=

c2dR2

R2(t)Ṙ2(t)
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Mattig relation Λ = 0

Along a light ray:

dr2

1− kr2
=

c2dt2

R2(t)
=

c2dR2

R2(t)Ṙ2(t)

From this, setting v = α0
Ω0R0

R in the right hand side, one can

derive (...):

R0 r =
c

H0

2

Ω2
0

Ω0(1 + z) + 2− 2Ω0 − (2− Ω0)
√
1 + Ω0 z

1 + z
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Mattig relation Λ = 0

Along a light ray:

dr2

1− kr2
=

c2dt2

R2(t)
=

c2dR2

R2(t)Ṙ2(t)

From this, setting v = α0
Ω0R0

R in the right hand side, one can

derive (...):

R0 r =
c

H0

2

Ω2
0

Ω0(1 + z) + 2− 2Ω0 − (2− Ω0)
√
1 + Ω0 z

1 + z

when z << 1 R0 r ∼ c
H0
z

when z >> 1 R0 r ∼ c
H0

2
Ω0
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Matter domination area: case k = −1 Λ = 0

Ṙ2 =
8π G ρR2

3
− kc2

= H2
0Ω0 R2

0 (1 + z) + (1− Ω0) H
2
0 R2

0
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Matter domination area: case k = −1 Λ = 0

Ṙ2 =
8π G ρR2

3
− kc2

= H2
0Ω0 R2

0 (1 + z) + (1− Ω0) H
2
0 R2

0

so when 1 + z >> 1−Ω0

Ω0
one has : R ∝ t2/3

while when 1 + z << 1−Ω0

Ω0
Ṙ ∼ cste one has R ∝ t
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Matter domination area: case k = −1 Λ = 0

Ṙ2 =
8π G ρR2

3
− kc2

= H2
0Ω0 R2

0 (1 + z) + (1− Ω0) H
2
0 R2

0

so when 1 + z >> 1−Ω0

Ω0
one has : R ∝ t2/3

while when 1 + z << 1−Ω0

Ω0
Ṙ ∼ cste one has R ∝ t R(t) can be

developped:

H0 t =
Ω0

2(1− Ω0)3/2
(sinh(ψ)− ψ)

1

1 + z
=

R(t)

R0
=

Ω0

2(1− Ω0)
(cosh(ψ)− 1)

Allows analytical expression of H0 t(z)
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The expression:

Ṙ2 = H2
0Ω0 R2

0 (1 + z) + (1− Ω0) H
2
0 R2

0

allows to find Rm so that Ṙ = 0

Rm = R0
Ω0

Ω0 − 1
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Matter domination area: case k = +1 Λ = 0

The expression:

Ṙ2 = H2
0Ω0 R2

0 (1 + z) + (1− Ω0) H
2
0 R2

0

allows to find Rm so that Ṙ = 0

Rm = R0
Ω0

Ω0 − 1

R(t) can be developped as well:

H0 t =
Ω0

2(Ω0 − 1)3/2
(φ− sin(φ))

1

1 + z
=

R(t)

R0
=

Ω0

2(Ω0 − 1)
(1− cos(φ))
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Matter domination area: case k = +1 Λ = 0

At the maximum:

Rm = c
2 tm
π

ρm =
3π

32 G t2m

tm =
1

H0

Ω0

(Ω0 − 1)3/2
π

(useful for structure formation)
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2R̈ = −8 πG

3
(ρ+

3P

c2
)R +

2Λ

3
R

If Λ < 0 it is an attractive force
If Λ > 0 it is a repulsive force, in which case R(t) might not go through R = 0.
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Matter domination area: cases Λ 6= 0

2R̈ = −8 πG

3
(ρ+

3P

c2
)R +

2Λ

3
R

If Λ < 0 it is an attractive force
If Λ > 0 it is a repulsive force, in which case R(t) might not go through R = 0.

Case P = 0

2R̈ = H2
0R0[

2 λ0
(1 + z)

− Ω0 (1 + z)2]

Ṙ2 = H2
0R

2
0 [

λ0
(1 + z)2

+ (1− Ω0 − λ0) + Ω0(1 + z)]
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Matter domination area: cases Λ 6= 0

2R̈ = −8 πG

3
(ρ+

3P

c2
)R +

2Λ

3
R

If Λ < 0 it is an attractive force
If Λ > 0 it is a repulsive force, in which case R(t) might not go through R = 0.

Case P = 0

2R̈ = H2
0R0[

2 λ0
(1 + z)

− Ω0 (1 + z)2]

Ṙ2 = H2
0R

2
0 [

λ0
(1 + z)2

+ (1− Ω0 − λ0) + Ω0(1 + z)]

setting u = 1 + z one gets:

Ṙ2 ∝ λ0
u2

+ (1− Ω0 − λ0) + Ω0 u = f (u)
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Matter domination area: cases Λ 6= 0

The “useful” relations R0r , t(z), ... are not analytical.

Ṙ2 =
8 πG ρ R2

3
− kc2 +

ΛR2

3

= H2
0R

2
0 [

ΩΛ

(1 + z)2
− Ωk +Ω0(1 + z)]
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Matter domination area: cases Λ 6= 0

The “useful” relations R0r , t(z), ... are not analytical.

Ṙ2 =
8 πG ρ R2

3
− kc2 +

ΛR2

3

= H2
0R

2
0 [

ΩΛ

(1 + z)2
− Ωk +Ω0(1 + z)]

Mattig relation

S−1
k (r) =

∫ t0

t(z)

c dt

R(t)
= |Ωk |1/2

∫ 1+z

1

d u

(Ω0u3 − Ωku2 +ΩΛ)1/2
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Matter domination area: cases Λ 6= 0

The “useful” relations R0r , t(z), ... are not analytical.

Ṙ2 =
8 πG ρ R2

3
− kc2 +

ΛR2

3

= H2
0R

2
0 [

ΩΛ

(1 + z)2
− Ωk +Ω0(1 + z)]

Mattig relation

S−1
k (r) =

∫ t0

t(z)

c dt

R(t)
= |Ωk |1/2

∫ 1+z

1

d u

(Ω0u3 − Ωku2 +ΩΛ)1/2

Age:

t0 − t(z) =

∫ t0

t(z)

dt =

∫ 1+z

1

1

H0

d u

u(Ω0u3 − Ωku2 +ΩΛ)1/2
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Matter dominated cases Λ 6= 0: Applications

◮ Mattig relation : R0 r(z)

◮ Angular distance : θ = d
Dang (z)

→ minimum at some z then increases!

◮ Look back time: H0(t0 − t(z))

→ at z ∼ 1 the universe is significantly younger:

Ω ∼ 0. ΩΛ = 0. z = 1 ↔ t1 ∼ 0.5 t0

Ω = 1. ΩΛ = 0. z = 1 ↔ t1 ∼ 0.35 t0

Ω = 0.3 ΩΛ = 0.7 z = 1 ↔ t1 ∼ 0.35 t0
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Matter dominated cases Λ 6= 0: Applications

◮ Mattig relation : R0 r(z)

◮ Angular distance : θ = d
Dang (z)

→ minimum at some z then increases!

◮ Look back time: H0(t0 − t(z))

→ at z ∼ 1 the universe is significantly younger:

Ω ∼ 0. ΩΛ = 0. z = 1 ↔ t1 ∼ 0.5 t0

Ω = 1. ΩΛ = 0. z = 1 ↔ t1 ∼ 0.35 t0

Ω = 0.3 ΩΛ = 0.7 z = 1 ↔ t1 ∼ 0.35 t0

Models with (Ω,ΩΛ > 0) are older than with (Ω,ΩΛ = 0), the difference being important only when ΩΛ ∼ λc .
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Radiation dominated case

P =
1

3
ργ c2 and ργ R4 = cste

E.F.L. Equations:

(

Ṙ

R

)2

=
8 πG

3
(ργ + ρm)−

kc2

R2
+

Λ

3

∝ 1

R4

1

R3

1

R2
cste
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Radiation dominated case

P =
1

3
ργ c2 and ργ R4 = cste

E.F.L. Equations:

(

Ṙ

R

)2

=
8 πG

3
(ργ + ρm)−

kc2

R2
+

Λ

3

∝ 1

R4

1

R3

1

R2
cste

→ The radiation term is dominant at high redshift: Ṙ = cste

R
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Radiation dominated case

P =
1

3
ργ c2 and ργ R4 = cste

E.F.L. Equations:

(

Ṙ

R

)2

=
8 πG

3
(ργ + ρm)−

kc2

R2
+

Λ

3

∝ 1

R4

1

R3

1

R2
cste

→ The radiation term is dominant at high redshift: Ṙ = cste

R

Solution:

R = R1

( t

τ

)1/2

with τ 2 =
3

32 π G ρ1

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Toward the EFL equations
Solutions
Some historical remarks
Summary at this point

The development of RG cosmological models

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Toward the EFL equations
Solutions
Some historical remarks
Summary at this point

The development of RG cosmological models

A. Einstein: 1916: GR + first consistent cosmological model.
Einstein cosmological principle: The universe is homogeneous on
large scale.

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Toward the EFL equations
Solutions
Some historical remarks
Summary at this point

The development of RG cosmological models

A. Einstein: 1916: GR + first consistent cosmological model.
Einstein cosmological principle: The universe is homogeneous on
large scale.

W. De Sitter: 1919 GR +Λ with ρ = 0.
Static but particles move. Redshift ∝ D.

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Toward the EFL equations
Solutions
Some historical remarks
Summary at this point

The development of RG cosmological models

A. Einstein: 1916: GR + first consistent cosmological model.
Einstein cosmological principle: The universe is homogeneous on
large scale.

W. De Sitter: 1919 GR +Λ with ρ = 0.
Static but particles move. Redshift ∝ D.

A. Friedmann: 1922-1924: G.R. general solutions with positive
and negative curvature. Polemic with Einstein.
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The Discovery of expansion

Lemâıtre 1925: De Sitter world = expanding world.
1927: expanding solution with ρ 6= 0 .

Hubble 1929: The linear relation between D and v
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The golden age: 1933-1964

Zwicky Missing mass in Coma.

Lemâıtre Beginning ? Singularity ? How did structures originate ?

Gamov 1942-1948: Origin of elements → T

Penzias, Wilson, Dicke’s group 1964: Discovery and
interpretation of the CMB.
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Classical Cosmology

Classical established physics

◮ Expansion

◮ Abundance of light elemnts

◮ Existence and properties of the CMB radiation

Physics is known up to E ∼ 10 TeV, i.e. t ∼ 10−14 s.
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η10 = 1010η = 1010
np+n

nγ
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After few minutes, BBN is set up. Only one parameter:

η10 = 1010η = 1010
np+n

nγ

For a “standard” model (Nν = 3, no exotic physics, ...), very
predictive.
Calculation, reaction network are simple.
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Primordial Nucleosynthesis

After few minutes, BBN is set up. Only one parameter:

η10 = 1010η = 1010
np+n

nγ

For a “standard” model (Nν = 3, no exotic physics, ...), very
predictive.
Calculation, reaction network are simple.
Code publicly available:
www-thphys.physics.ox.ac.uk/users/SubirSarkar/bbn.html
Limitations:
- neutron lifetime
- nuclear reaction rate
- primordial abundances estimations
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Summary at this point

Troubles/Questions

◮ Asymmetry matter-anti-matter

◮ The model relies on the existence of non-baryonic matter

◮ The model suffers from an “initial condition” problem.

◮ The expansion is accelerating!

This is calling for Physics beyond “knwon Physics”
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The initial condition issue

What inflation solves (A.Guth)

◮ No magnetic monopole...

◮ Curvature is surprisingly close to zero

◮ The observable universe contains many regions which were
not causaly connected (and still are synchronized!)

◮ The mechanism provides an origin for the initial fluctuations
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Horizon and Inflation

horizon in standard FL dynamics:

R(t) = R0(t/t0)
1/2

(neglecting matter dominated phase...) thus :

R0rH(t) = R0

∫ t

0

cdt

R(t)
= 2Ct1/2t

1/2
0

i.e. at the Planck time (tP):

(R0rH(t0))
3 ≈ 1090(R0rH(tP))

3

This is just crazy...
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The acceleration from a scalar field

In GR R̈ = −4πG
3 (ρ+ 3P/c2)R

P = wρ

For a scalar field, Φ, the density is:

ρΦ =
1

2
Φ̇2 + V (Φ)

and the pressure P :

PΦ =
1

2
Φ̇2 − V (Φ)

The condition P < −1/3ρ reads Φ̇2 < V (Φ)
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ȧ

a
φ̇+

dV

dφ
= 0

Slow roll condition : Φ̇2 ≪ V (Φ) i.e. H2 = 1/3V (8πG = 1)
so Φ̈ ≪ V ′(Φ) (′ = d/dφ).

3Hφ̇ = −V ′(φ)

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Dark matters!
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Go back to energy conservation :

φ̈+ 3
ȧ

a
φ̇+

dV

dφ
= 0

Slow roll condition : Φ̇2 ≪ V (Φ) i.e. H2 = 1/3V (8πG = 1)
so Φ̈ ≪ V ′(Φ) (′ = d/dφ).

3Hφ̇ = −V ′(φ)

so slow roll condition becomes:

V ′2

H2
=

V ′2

V
≪ V i.e.

(

V ′

V

)2

≪ 1
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Dark energy: Quintessence

Today acceleration → scalar field!
Peebles-Ratra:

V (Φ) ∝ Φ−n

other potentials come from other theories (SUGRA, ...)

ρΦ =
1

2
Φ̇2 + V (Φ) and P/c2 =

1

2
Φ̇2 − V (Φ)

Allowing −1 ≤ w ≤ 0. Even w ≤ −1 is possible...
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Modified gravity

Take a Lagrangian extending Einstein-Hilbert’s one.

Have look at Amendola et al. 2013, arXiv1206.1225A
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Vacuum

From quantum field point of view:
in vacuum a non zero electric field can exist for some duration ∆t
provide it does not violate Heisenberg.
In GR energy gravitates.
when ∆t → 0 ∆E → +∞...
Harmonic oscillator:

En = (n +
1

2
)hν

zero point energy: 1
2hν contributes to ρV .
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Historical aspects

Λ was introduced by Einstein

Lemâıtre (1934) made the comment that Λ is equivalent to a
Lorentz invariant non-zero vacuum, i.e.

P = −ρ (1)

Is there an experimental difference between Λ and L.I.V.?

Nerst (1916) and Pauli discussed the possible contribution of
zero-point energy to the density of the Universe (→ Kragh
arXiv:1111.4623)

So is this the origin of the acceleration ?
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Historical aspects

No!
The Vacuum catastroph (Weinberg, 1989):

ρv = 〈0|T 00|0〉 = 1

(2π)3

∫ kc

0

1

2
~ω d3k

with ω2 = k2 +m2 highly divergent:

ρv (kc) ∝
k4c

16π2

(for kc ≫ m).
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Equation of state

The pressure (massless field):

Pv = (1/3)
∑

i

〈0|T ii |0〉 = 1

3

1

2(2π)3

∫ +∞

0
k d3k

So that any regularization that is applied to both quantities leads
to the e.o.s.:

P =
1

3
ρ (2)

i.e. eq. (1) + eq. (2) leads to :

Pv = ρv = 0
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Equation of state

The pressure (massless field):

Pv = (1/3)
∑

i

〈0|T ii |0〉 = 1

3

1

2(2π)3

∫ +∞

0
k d3k

So that any regularization that is applied to both quantities leads
to the e.o.s.:

P =
1

3
ρ (2)

i.e. eq. (1) + eq. (2) leads to :

Pv = ρv = 0

→ usual conclusion on zero-point energy contribution (for instance
by dimensional regularization).
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Equation of state

Does not hold for a massive field (Zeldovich 1968, ...):

Pv = −ρv

But
ρv = m4(...)

cf Review by J.Martin 2012 (astro-ph/1205.3365).

Everything You Always Wanted To Know About
The Cosmological Constant Problem (But Were Afraid To Ask)
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Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect
with:

Px = 3ρ < 0

and ...
P// = −ρ

Brown & Maclay (1968)
Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Dark matters!

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Dark matters!

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Dark matters!

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

The quantification of gravitational field modes in the bulk leads to
a Casimir energy (Appelquist & Chodos, 1983).

Alain Blanchard Cosmology: Basics



Outline
Introduction

Theory of Observations in RW space
Dynamics and Solutions

Cosmological parameters estimations
Successes and questions

Dark matters!

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

The quantification of gravitational field modes in the bulk leads to
a Casimir energy (Appelquist & Chodos, 1983).

This result can be established by evaluating zero mode
contributions (Rohrlich 1984).
Dispersion relation:

ω2 = k2 +
n2

R2
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Casimir effect from higher dimension

Assume there is an additional compact dimension.

Standard physics in 3+1 D (brane), gravity in 3+1+1D (Bulk).

The quantification of gravitational field modes in the bulk leads to
a Casimir energy (Appelquist & Chodos, 1983).

This result can be established by evaluating zero mode
contributions (Rohrlich 1984).
Dispersion relation:

ω2 = k2 +
n2

R2

This (permanent) contribution can be evaluated by mean of
dimensional regularization.
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Casimir effect: the Hubble radius

Assumption 1: At high energy, only modes with λ smaller than ct
have to be taken into account i.e.:

ρv =
5~c

8π3R

∫ ∞

ω>ωH

k2dk

[

∞
∑

n=−∞

(

k2 +
n2

R2

)1/2
]
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Casimir effect: the Hubble radius

Assumption 1: At high energy, only modes with λ smaller than ct
have to be taken into account i.e.:

ρv =
5~c

8π3R

∫ ∞

ω>ωH

k2dk

[

∞
∑

n=−∞

(

k2 +
n2

R2

)1/2
]

Assumption 2: as long as ct ≪ πR gravitational vacuum should be
that of a massless field in a 4+1D space time i.e.:

ρv = 0
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Space Isotropy ends...

when ct ∼ πR ωH ∼ 1
R
, this is the last time at which

symetries ensure ρv = 0. Then

ρv =
5~c

8π3R

∫ ∞

1/R

k
2
dk [...] = 0
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Space Isotropy ends...

when ct ∼ πR ωH ∼ 1
R
, this is the last time at which

symetries ensure ρv = 0. Then

ρv =
5~c

8π3R

∫ ∞

1/R

k
2
dk [...] = 0

Later, when ct ≫ πR i.e. ωH ∼ 0

ρv =
5~c

8π3R

∫ ∞

0

k
2
dk [...] =

5~c

8π3R

∫ 1/R

0

k
2
dk [...]

with :

[...] =

[

∞
∑

n=−∞

(

k
2 +

n
2

R2

)1/2
]
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Isotropy ends...

The condition :

ω =

√

k2 +
n2

R2
<

1

R

ensured only if n = 0, so:

ρv =
5~c

8π3R

∫ 1/R

0

k
3
dk =

5~c

32π3R5
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Isotropy ends...

The condition :

ω =

√

k2 +
n2

R2
<

1

R

ensured only if n = 0, so:

ρv =
5~c

8π3R

∫ 1/R

0

k
3
dk =

5~c

32π3R5

In the brane:

ρv =
5~c

16π2R4
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Dark energy emerges...

Pressure:

P⊥
v = 4ρ0 =

20~c

32π3R5

Along the brane, using the fact that the Tµν is traceless and
integrating along the 4th spatial dimension:

P
‖
v = − 5~c

16π2R4
= −ρv
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Dark energy emerges...

Pressure:

P⊥
v = 4ρ0 =

20~c

32π3R5

Along the brane, using the fact that the Tµν is traceless and
integrating along the 4th spatial dimension:

P
‖
v = − 5~c

16π2R4
= −ρv

so:

R =

(

5~G

2πcΛ

)
1
4
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Dark energy emerges...

Pressure:

P⊥
v = 4ρ0 =

20~c

32π3R5

Along the brane, using the fact that the Tµν is traceless and
integrating along the 4th spatial dimension:

P
‖
v = − 5~c

16π2R4
= −ρv

so:

R =

(

5~G

2πcΛ

)
1
4

Ωv ∼ 0.7 ⇒ R ∼ 35µm fits data. Corresponding to E ∼ 1TeV
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Consequences

The presence of additional compact “large” dimension (∼ 35µm)
can be tested by experiment on gravitational inverse square law on
short scale. Additional term:
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Consequences

Present day limit (Adelberger et al. 2009) :

R < 46µm
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Conclusion
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compact dimension can produce a non-zero vacuum
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correct equation of state for a cosmological constant. i.e.
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Conclusion

◮ Casimir effect from quantized scalar field in additional
compact dimension can produce a non-zero vacuum
contribution to the density of the universe with the
correct equation of state for a cosmological constant. i.e.
“usual” physics for DE.

◮ Acceleration could be the direct manifestation of the
quantum gravitational vacuum.

◮ With R ∼ 35µm it produces a cosmological constant as
observed. → gravitation is modified on scales ≤ 45µm
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General Conclusion on Cosmology

◮ A simple model for the universe based on known physics
was build and was successful

◮ A model for structure formation the universe based on
somewhat unknown physics was build (ΛCDM) and was
successful

◮ It is likely that more and more astrophysical data are
needed and in some case could be the only way out for
progresses
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