Part 6

Spin Coherence Time

Edward J. Stephenson
Indiana University Center for Spacetime Symmetries

Ferrara International School Niccolò Cabeo 2013
20-24 May 2013

There is a requirement that the initial polarization remain parallel to the particle velocity for times up to 1000 s . This is an unstable situation, so some action is required.

In general:

spin precesses around B-field

NOTE: To preserve the EDM signal, the experiment will move the polarization into a stable condition.

polarization parallel to the ring field remains.

Because of small variations in the precession rate, spin directions in the ring plane will spread out.

Decoherence, where does it arise?
The simplest explanation rests on small momentum changes from one particle to another.

$$
\text { Typically } \frac{\Delta p}{p}=10^{-3}-10^{-4}
$$

Changes in momentum make changes in γ.

$$
\theta_{P R E C}=(\mu-1) \gamma \theta_{B E A M}
$$

$$
\begin{aligned}
& \text { As an example, use }(\mathrm{COSY}) \\
& \text { deuterons with } p=0.97 \mathrm{GeV} / \mathrm{c} \\
& \\
& \text { From } f_{\mathrm{CYC}}=750602.5 \mathrm{~Hz} \\
& \quad f_{\mathrm{RES}}=871434.5 \mathrm{~Hz} \\
& G=-0.1429875 \\
& V=1.125832 \\
& \beta=0.459396 \\
& T=236.01292 \mathrm{MeV} \\
& \text { Circum. }=183.484 \mathrm{~m}
\end{aligned}
$$

Define spin tune: $(\mu-1) \gamma=G \gamma=v_{S}$

$$
\begin{gathered}
\text { If } \quad \Delta p / p=10^{-4} \\
\Delta v_{S} / v_{S}=\Delta \gamma / \gamma=\beta^{2} \Delta p / p=2.1 \times 10^{-5}
\end{gathered}
$$

"Depolarization" lifetime comes when a typical spin vector is 1 rad off the velocity.

$$
\tau_{P O L}=\frac{1}{2 \pi G \gamma f_{C Y C} \Delta v_{S} / v_{S}}=63 \mathrm{~ms}
$$

This is much less than 1000 s , we have to do something !

TRICK NUMBER 1

Bunch the beam.

This forces all particles to travel together. Small momentum differences disappear on average.
Particles will oscillate from the front to the back of the bunch, making $\pm \Delta p / p$.
The next difficulty is betatron (position) oscillations:
Bunching forces a longer path in the same time, so speed goes up. What is the change?

The (blue) triangular path is longer by

$$
\begin{aligned}
\frac{\Delta L}{L} & =\sqrt{1+\theta_{X}^{2}+\theta_{Y}^{2}}-1 \\
& \cong \frac{1}{2}\left(\theta_{X}^{2}+\theta_{Y}^{2}\right)
\end{aligned}
$$

$$
\frac{\Delta L}{L}=\frac{1}{4}\left(\theta_{X}^{2}+\theta_{Y}^{2}\right)
$$

The curved path is half of that.

$$
\frac{\Delta v_{S}}{v_{S}}=\gamma^{2} \beta^{2} \frac{\Delta v}{{ }^{v}}=\gamma^{2} \beta^{2} 0.5 \times 10^{-6}
$$

$$
\tau_{P O L}=9.9 \mathrm{~s}
$$

Not good enough!

TRICK NUMBER 2 Can higher order fields help?

A sextupole has the right symmetry.

And the field varies quadratically with X .
This means that the field will rise as the path length, since X follows θ.

This needs to be tested at COSY. But first...

In a simple model, imagine that the sextupole is like a dipole with expanding pole faces. Then follow rays:
 bend 4 times more than the inner two rays.

If such bending can be arranged to shorten the path length (such as in an arc of the ring), then compensation for path lengthening is possible.

We need two more things before a test at COSY:

1 There is no "frozen spin". In fact, the polarization in the horizontal plane rotates at 120832 Hz .

If you know this frequency well enough, then you know which way the polarization points at any time. Can polarimeter events be sorted by "direction" and a polarization calculated? We could only see the oscillation of the sideways component.

2 You have to inject and ramp the beam with the polarization up, or else it depolarized from ring-plane rotations. There needs to be a way to get it into the horizontal plane.

The missing piece of equipment is an RF-solenoid. It provides regular kicks, if the solenoid polarity changes at the same rate that the polarization rotates (or a harmonic of it).

So let's explore these two systems...

Sample data.

Make a series of kicks in opposite directions as the polarization precesses about the vertical.

Process seen from above.

field direction
Kicks are small, about 10^{-5} rev. Precession into the horizontal plane takes a fraction of a second.
(Data rescaled to begin at one.)

RF solenoid

New data acquisition procedure - time stamp every event
Count turn number (bunched beam) Compute total spin precession angle Bin by phase around the circle Compute asymmetry in each bin

distribution of turn number fraction yields beam distribution based on integral part of turn number
these curves determined by asymmetry measurements for 9 angle bins
smooth curves
through phase
bin asymmetries

As the polarization rotates the down-up asymmetry reflects the sideways projection of the polarization.

First Milestone: Counting turn number

Second Milestone: Asymmetry by phase of total spin precession angle

starting point, vertical polarization
sideways asymmetry in a one second time bin

stop at $\mathrm{Py}=0$, cooled beam is horizontally polarized

$$
\text { FWHM }=1.8 \times 10^{-6} \cdot(11 \mathrm{ppm})
$$

Function (F) to describe the time evolution of the polarization

Main contribution is path lengthening due to betatron oscillations. With bunched beam, this goes as $\theta_{X}^{2}+\theta_{Y}^{2}$
The maximum angles follow Gaussian distributions with σ_{X}, σ_{Y}
Generally X is larger than Y distribution, so $\alpha=\frac{\sigma_{Y}}{\sigma_{X}}<1$
Distribute points on circle in horizontal plane

Point distributions expands with time.
Calculate X and Y polarization, combine for magnitude.

round beam

"POSITIVITY" PROBLEM:

Any random distribution of points fit to a sine wave with adjustable phase and offset will yield a non-zero amplitude.

SAMPLE OF A GOOD DISTRIBUTION

You can model this (MC) by picking a typical error for the asymmetry at each point and adding (or not) some real signal to that.

PLAN: Add this effect to template.

For illustration, pick a case where the error is about the size of the typical signal.

(10 point circle average)

As you adjust a_{1} and a_{2}, include positivity correction.

Template:
Calculated with $\sigma=1$.
100,000 points used for each average.
(difference less than 1:1000 at $\varepsilon=0$)
200 point table.
Values used from cubic spline fit.

Non-linear regression based on CURFIT from P.R. Bevington with numerical derivatives.

Run 1143:
Shape value interpolated at each data point.
Correction calculated based on σ (cycle error) deduced from individual error in average ($\overline{\text {) }}$.

$$
\sigma=\sqrt{\frac{N_{\text {slices }} N_{\text {cycles }}}{2}} \delta
$$

Fit made using corrected values (changed at each iteration).

Some sample data (higher statistics runs)

"Best" shape, from chi square minimum

Solid: corrected calculation
Dashed: true asymmetry

Curve is quadratic fit to reduced chi square. Vertical line is center, best value of α. Dashed line is standard deviation width for this chi square curve. This width is marked below.

Variation of a2 with α. Solid point is "best".

Long lifetime sample

Location of best fit is not determined.

For the longest lifetime cases, the determination of a_{2} is nearly shape independent.

Definition of spin coherence time (unit conversion):

The ambiguity is (at least) to use the Gaussian width point or to assume that the similarity at very small times means choosing one value. -- Finally, it makes little difference.

At a polarization of 0.606..., the conversion from a_{2} to time in seconds varies with shape.

Can we lengthen in spin coherence time by changing the ring sextupole fields?

Only horizontal width of beam was adjustable. Choose a wide beam with short SCT, then fix it. Use MXS sextupole family (large β_{x})

Does the lifetime follow this dependence?

Run only tested this.

No correlations with alpha, quality of fit.
heat $=0.35$

All lines converge to same value of MXS strength to cancel the spread in the horizontal spin tune.

Early runs:
1126, 1133, 1142, 1152

Late runs:
1202, 1203, 1206, 1217, 1220, 1221, 1222

Sign changed for these three points to maintain linearity.

$$
K_{2}=\frac{1}{B \rho} \frac{\partial^{2} B}{\partial x^{2}}
$$

This remains a work in progress...
Recently:
Another test shows that best spin coherence time comes when chromaticity is zero.

$$
\xi_{X, Y}=\frac{(\Delta v / v)_{X, Y}}{\Delta p / p}
$$

Planned:

Further studies that characterize Y as well as X .
Is zero chromaticity a requirement?
Are there $\Delta p / p$ contributions beyond emittance?
Does beam mixing extend spin coherence time?

Nuclear Instruments and Methods in Physics Research A

ELSEVIER

Correcting systematic errors in high-sensitivity deuteron polarization measurements

N.P.M. Brantjes ${ }^{\text {a }}$, V. Dzordzhadze ${ }^{\text {b }}$, R. Gebel ${ }^{\text {c }}$, F. Gonnella ${ }^{\text {d.ee }}$, F.E. Gray ${ }^{\text {f }}$, D.J. van der Hoek ${ }^{\text {a }}$, A. Imig ${ }^{\text {b }}$, W.L. Kruithof ${ }^{\text {a }}$, D.M. Lazarus ${ }^{\text {b }}$, A. Lehrach ${ }^{\text {c }}$, B. Lorentz ${ }^{\text {c }}$, R. Messi ${ }^{\text {d,e }}$, D. Moricciani ${ }^{\text {e }}$, W.M. Morse ${ }^{\text {b }}$, G.A. Noid ${ }^{\text {g }}$, C.J.G. Onderwater ${ }^{\text {a }}$, C.S. Özben ${ }^{\text {h }}$, D. Prasuhn ${ }^{\text {c }}$, P. Levi Sandri ${ }^{i}$, Y.K. Semertzidis ${ }^{\text {b }}$, M. da Silva e Silva ${ }^{\text {a }}$, E.J. Stephenson ${ }^{\text {g.* }}$, H. Stockhorst ${ }^{\text {c }}$, G. Venanzoni ${ }^{\text {i }}$, O.O. Versolato ${ }^{\text {a }}$
${ }^{2}$ Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen, The Netherlands
${ }^{\mathrm{b}}$ Brookhaven National Laboratory, Upton, NY 11973, USA
${ }^{\text {c }}$ Institut für Kernphysik, Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
${ }^{\text {d Physica Department of "Tor Vergata" University, Rome, Italy }}$
e INFN-Sez "Roma tor Vergata," Rome, Italy
Regis University, Denver, CO 80221, USA
${ }^{8}$ Indiana University Cydotron Facility, Bloomington, IN 47408, USA
${ }^{1}$ Istanbul Technical University, Instanbul 34469, Turkey
Laboratori Nazionali di Frascati dell'INFN, Frascati, Italy

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 124202 (2012)

Synchrotron oscillation effects on an rf-solenoid spin resonance

P. Benati, ${ }^{1}$ D. Chiladze, ${ }^{2,3}$ J. Dietrich, ${ }^{3}$ M. Gaisser, ${ }^{3}$ R. Gebel, ${ }^{3}$ G. Guidoboni, ${ }^{1}$ V. Hejny, ${ }^{3}$ A. Kacharava, ${ }^{3}$ V. Kamerdzhiev, ${ }^{3}$ P. Kulessa, ${ }^{4}$ A. Lehrach, ${ }^{3}$ P. Lenisa, ${ }^{1}$ B. Lorentz, ${ }^{3}$ R. Maier, ${ }^{3}$ D. Mchedlishvili, ${ }^{2,3}$ W. M. Morse, ${ }^{5}$ D. Öllers, ${ }^{1}$ A. Pesce, ${ }^{1}$ A. Polyanskiy, ${ }^{3,6}$ D. Prasuhn, ${ }^{3}$ F. Rathmann, ${ }^{3}$ Y. K. Semertzidis, ${ }^{5}$ E. J. Stephenson, ${ }^{7}$ H. Stockhorst, ${ }^{3}$ H. Ströher, ${ }^{3}$
R. Talman, ${ }^{8}$ Yu. Valdau, ${ }^{9,10} \mathrm{Ch}$. Weidemann, ${ }^{1}$ and P. Wüstner ${ }^{11}$
${ }^{1}$ University of Ferrara and INFN, 44100 Ferrara, Italy
${ }^{2}$ High Energy Physics Institute, Tbilisi State University, 0218 Tbilisi, Georgia
${ }^{3}$ Institute für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany
${ }^{4}$ Institute of Nuclear Physics PAN, 31-342 Krakow, Poland
${ }^{5}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{6}$ Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia
${ }^{7}$ Indiana University Center for Spacetime Symmetries, Indiana University, Bloomington, Indiana 47405, USA
${ }^{8}$ Cornell University, Ithaca, New York 14850, USA
${ }^{9}$ Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
${ }^{10}$ Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn, Germany
${ }^{11}$ ZEL, Forschungszentrum Jülich, D-52425 Jülich, Germany
(Received 14 September 2012; published 19 December 2012)

Collaboration List (2013)

Z. Bagdasarian, ${ }^{1,2}$ J. Bsaisou, ${ }^{3 *}$ S. Chekmenev, ${ }^{4}$ D. Chiladze, ${ }^{1,2}$ J. Dietrich, ${ }^{2}$ S. Dymov, ${ }^{2,5}$
D. Eversmann, ${ }^{4}$ M. Gaisser, ${ }^{2}$ R.Gebel, ${ }^{2}$ B. Gou, ${ }^{6}$ G. Guidoboni, ${ }^{7}$ V. Hejny, ${ }^{2}$ F. Hinder, ${ }^{4}$ A. Kacharava, ${ }^{2}$ V. Kamerdzhiev, ${ }^{2}$ A. Lehrach, ${ }^{2}$ P. Lenisa, ${ }^{7}$ B. Lorentz, ${ }^{2}$ P. Maanen, ${ }^{4}$ R. Maier, ${ }^{2}$ D. Mchedlishvili, ${ }^{1,2}$ S. Mey, ${ }^{2}$ W. Morse, ${ }^{8}$ A. Nass, ${ }^{2}$ D. Oellers, ${ }^{7}$ A. Pesce, ${ }^{7}$ D. Prasuhn, ${ }^{2}$ J. Pretz, ${ }^{4}$ F. Rathmann, ${ }^{2}$ M. Rosenthal, ${ }^{2}$ A. Saleev, ${ }^{2}$ N. Savderova, ${ }^{2}$ Y. Semertzidis, ${ }^{8}$ Yu. Senichev, ${ }^{2}$
V. Shmakova, ${ }^{2,5}$ E. Stephenson, ${ }^{9}$ H. Stockhorst, ${ }^{2}$ H. Ströher, ${ }^{2}$ R. Talman, ${ }^{10}$ P. Thorngren-Engblom, ${ }^{11}$ Yu. Valdau, ${ }^{3,12}$ C. Weidemann, ${ }^{7}$ P. Wüstner, ${ }^{13}$ and D. Zyuzin ${ }^{2}$
${ }^{1}$ High Energy Physics Institute, Tbilisi State University, GE-0186 Tbilisi, Georgia
${ }^{2}$ Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany
${ }^{3}$ Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
${ }^{4}$ RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
${ }^{5}$ Joint Institute for Nuclear Research, LNP, RU-141980 Dubna, Russia
${ }^{6}$ Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
${ }^{7}$ University of Ferrara and INFN, 44100 Ferrara, Italy
${ }^{8}$ Brookhaven National Laboratory, Upton, New York 11973 USA
${ }^{9}$ Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 USA
${ }^{10}$ Cornell University, Ithaca, New York 14850 USA
${ }^{11}$ KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
${ }^{12}$ Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn, Germany
${ }^{13}$ ZEA-2, Forschungszentrum Jülich, D-52425 Jülich, Germany

