Part 3

Nuclear Scattering Polarimetry

Edward J. Stephenson
Indiana University Center for Spacetime Symmetries

Ferrara International School Niccolò Cabeo 2013
20-24 May 2013

A typical experimental layout contains:

A polarization of the beam (p) causes a difference in the rates for scattering to the left and right according to:

Example for proton scattering on carbon

Region most used for polarimetry ($6^{\circ}-20^{\circ}$)

There is a long history of L / R systems.

Using plastic scintillator passing detectors, a number of polarimeters were built and operated for nuclear structure work.

We are lucky to have landed near this peak.

This leads directly to a scheme for picking out the EDM signal.

EDDA detector

Azimuthal angles yield two asymmetries:

$$
\varepsilon_{E D M}=\frac{L-R}{L+R} \quad \varepsilon_{g-2}=\frac{D-U}{D+U}
$$

This asymmetry is EDM sensitive.

In order to maintain "frozen spin", or longitudinal polarization, for 1000 s , ending with a 20° error at the end means holding machine conditions to 4×10^{-11}. This requires continuous feedback on the error in the polarization direction.

Measure this continuously.

If a vertical asymmetry appears, immediately correct the machine (frequency or field).

This puts a premium on statistics, and polarimeter efficiency.

For deuterons, there are three magnetic spin projections.
Polarized ion sources (good quantization axis) produce two polarizations.

$$
\begin{aligned}
& \text { Vector: } p_{V}=f_{1}-f_{-1} \quad \text { Tensor: } p_{T}=1-3 f_{0} \\
& i t_{11}=\frac{\sqrt{3}}{2} p_{V} \sin \beta \cos \varphi \\
& t_{20}=\frac{1}{\sqrt{8}} p_{T}\left(3 \cos ^{2} \beta-1\right) \\
& t_{21}=\frac{\sqrt{3}}{2} p_{T} \sin \beta \cos \beta \sin \varphi \\
& t_{22}=\frac{\sqrt{3}}{4} p_{T} \sin ^{2} \beta \cos 2 \varphi \\
& \sigma(\theta, \beta, \varphi)=\sigma_{U N P}(\theta)\left[1+2 i t_{11} i T_{11}(\theta)+t_{20} T_{20}(\theta)\right. \\
& \left.+2 t_{21} T_{21}(\theta)+2 t_{22} T_{22}(\theta)\right]
\end{aligned}
$$

Spherical Tensor notation (another scheme is Cartesian)

Scheme for measuring the various deuteron polarizations or analyzing powers with a single detector.

Like the proton, the vector asymmetry carries the EDM signal. Here a comparison

$$
T_{11}=\frac{\sigma_{u}-\sigma_{0}}{2 \sigma_{0}}
$$ of polarization up and down rates replaces left-right scattering.

If you choose maximal polarization for both vector and tensor $\left(p_{V}=p_{T}=1\right.$, all $\left.f_{1}\right)$ then a T_{20} measurement directly gives
 the longitudinal polarization.

One problem with this scheme is that any small rotation of the polarization away from the forward direction also produces a left-right asymmetry through T_{21}, an analyzing power that is commonly small. But it comes with a down-up asymmetry (used to monitor the polarization direction), so should be distinguishable.

Deuteron-carbon analyzing powers are large at forward angles (optical model spin-orbit force).

Y. Satou, PL B 549, 307 (2002)

Inelastic and (d, p) are similar, and should be included.

Breakup has no analyzing power, so avoid it.
Simplest polarimeter is absorber/detector:

Part 4

Polarimeter Efficiency

Edward J. Stephenson
Indiana University Center for Spacetime Symmetries

Ferrara International School Niccolò Cabeo 2013
20-24 May 2013

High statistics are important for:

1. getting sensitivity to EDM
2. having feedback to tune machine

Solution is thick targets:
every event has maximum change for nuclear scatter spectrometers have used several cm to get 1-4\%

Limit on thickness is:
changes in cross section/analyzing power angular distribution beam multiple scattering, spreading into sensitive region energy straggling at the detector

Cleanly detecting simple reaction channel gets lost.
Polarimeter becomes "black box" with good properties.
Build for reproducibility, then calibrate.
Use elastic scattering on carbon, $4^{\circ}-20^{\circ}$.
In COSY work, limits of 1.5 cm and $>9^{\circ}$ cost more than a factor of 10 .

1 Put thick target near beam, move beam into target. Use position ramp or white noise applied to electric field plates.

Motion is $\ll \mu \mathrm{m} / \mathrm{turn}$

2 Beam particle hits ridge on target, multiple scatters (Coulomb).

Some particles penetrate target and scatter.

3 Betatron motion on next turns brings particles into target face.

Typical depth $=0.2 \mathrm{~mm}$.
Values agree with simulations.
Efficiencies of 1% are possible.

Part 5

Polarimeter Systematic Errors

Edward J. Stephenson
Indiana University Center for Spacetime Symmetries

Ferrara International School Niccolò Cabeo 2013
20-24 May 2013

How to manage systematic errors:

(measuring left-right asymmetry)

Usual tricks: Locate detectors on both sides of the beam (L and R).
Repeat experiment with up and down polarization.
Cancel effects in formula for asymmetry (cross-ratio).
From experiments with large induced errors and a model of those errors:

$$
p A=\varepsilon=\frac{r-1}{r+1} \quad r^{2}=\frac{L(+) R(-)}{L(-) R(+)}
$$

But this fails at second order in the errors.
$\frac{\text { Using the data itself, }}{\text { devise parameters: }} \quad \phi=\frac{s-1}{s+1} \quad s^{2}=\frac{L(+) L(-)}{R(+) R(-)}, \quad$ and \quad rate $\quad W=L+R$
Calibrate polarimeter derivatives and correct (real time):

$$
\varepsilon_{C R, \text { corr }}=\frac{r-1}{r+1}-\left(\frac{\partial \varepsilon_{C R}}{\partial \phi}(\phi)\right)_{M O D E L} \Delta \phi-\left(\frac{\partial \varepsilon_{C R}}{\partial W}(W)\right)_{M O D E L} \Delta W
$$

Tests made at the KVI (2007)

Best method: "cross ratio", "square root" method

$$
\varepsilon=\frac{3}{2} p A=\frac{r-1}{r+1} \quad \text { where } \quad r^{2}=\frac{L(+) R(-)}{L(-) R(+)}
$$

This method fails at second order in errors.

$$
\begin{gathered}
\varepsilon(\exp)=\varepsilon+\frac{1}{1-\varepsilon^{2}}\left\{\varepsilon^{3} u^{2}+2 \varepsilon^{2}\left(\frac{1}{A} \frac{\partial A}{\partial x}\right) u x+\varepsilon\left[\left(\frac{1}{A} \frac{\partial^{2} A}{\partial x^{2}}\right)\left(1-\varepsilon^{2}\right)-\left(\frac{1}{A} \frac{\partial A}{\partial x}\right)^{2} \varepsilon^{2}\right] x^{2}\right\} \\
\text { "true" asymmetry } \\
\text { observed asymmetry }
\end{gathered}
$$

Cross Ratio (18°)

Calculation based on deuteron elastic scattering data at 130 MeV and measured beam polarizations.

Changes to beam position/angle produced effects that calibrate the polarimeter for errors.

Vector	Vector	
Analyzing	Polarization p_{y}	
Power	$[\mathrm{V}-]$	$0.5370(4)$
$\mathrm{A}_{\mathrm{y}}=0.349(6)$	$[\mathrm{V}+]$	$-0.3954(4)$
	$[\mathrm{T}+]$	$-0.3399(4)$
FRONT	$[\mathrm{T}-]$	$0.7311(4)$

$$
\begin{equation*}
\varepsilon=\frac{D+U-L-R}{D+U+L+R}=\frac{\sqrt{6} p_{T} T_{22}}{\sqrt{8}-p_{T} T_{20}} \cong \frac{1}{2} p_{T} A_{T} \tag{Group 5}
\end{equation*}
$$

Analyzing Power	Polarization p_{T}	
$\mathrm{A}_{\mathrm{T}}=0.0721(2)$	$[\mathrm{V}-]$	$0.1580(3)$
	$[\mathrm{V}+]$	$-0.0841(3)$
	$[\mathrm{T}+]$	$0.4448(3)$
FRONT	$[\mathrm{T}-]$	$-0.7641(3)$

Offset gives DU/LR solid angle ratio
$0.00029(1) \quad 1 / \mathrm{rad}^{2}$
1.3048(2)
difference from one compensates for tail fraction

Geometry model

Parameters we know we need to include:
EDDA Analyzing power: $\quad A_{y} \quad$ and $\quad A_{T}=\frac{\sqrt{6} T_{22}}{\sqrt{8}-p_{T} T_{20}}$
Polarizations: $\quad \mathrm{p}_{\mathrm{V}}$ and p_{T} for the states $\mathrm{V}+, \mathrm{V}-, \mathrm{T}+, \mathrm{T}-$
There is some information available from the COSY Low Energy Polarimeter.

Logarithmic derivatives: $\frac{\sigma^{\prime}}{\sigma}, \frac{\sigma^{\prime \prime}}{\sigma}, \frac{A_{y}{ }^{\prime}}{A_{y}}, \frac{A_{y}{ }^{\prime \prime}}{A_{y}}, \frac{A_{T}{ }^{\prime}}{A_{T}}, \frac{A_{T}{ }^{\prime \prime}}{A_{T}}$

Solid angle ratios: L/R $\quad \mathrm{D} / \mathrm{U} \quad(\mathrm{D}+\mathrm{U}) /(\mathrm{L}+\mathrm{R})$
Total so far: 19 parameters

Parameters we found we needed:

Rotation of Down/Up detector (sensitive to vertical polarization): $\quad \theta_{\text {rot }}$
$X-Y$ and $\theta_{X}-\theta_{Y}$ coupling (makes D / U sensitive to horizontal errors): C_{X}, C_{θ}
Ratio of position and angle effects (effective distance to the detector):

$$
X / \theta=R
$$

Tail fraction: multiple-scattered, spin-independent, lower-momentum flux that is recorded only by the "right" detector (to inside of ring)

$$
F=\text { fraction } \quad F_{X}, F_{\theta} \text { sensitivities to position and angle shifts }
$$

Total parameters: 26

Fitting revealed one continuous ambiguity involving L/R and (D+U)/(L+R) solid angle ratios, the tail fraction, effective detector distance, and all polarizations.

Choice was to freeze L/R solid angle ratio for front rings at one.

Conclusions

Chi square distribution for geometry fit

Reduced chi square is 1.7

Reproduction of data by model is good; there are no unexplained features.

Tests were made with the beam shifting by 4 mm during the store.

slope: $-1.4 \pm 28 \times 10^{-6} / \mathrm{s}$

Tests were made with high rate and displaced beam.

Since asymmetry depends only on count rates and calibration coefficients, we get results in real time.

Corrections work.

