The ALPS-II experiment.

Unprecedented sensitivity for 'very light particles beyond the SM'

Babette Döbrich

Niccolò Cabeo School Ferrara, May 23rd 2013

Outline

- > T/P: ALPS-II: Motivation, Goals and Tools Overview
- > E: Laser and optics
- > E: Magnet system
- > E: Detection system
- > More on helio- and haloscopes
- > Closing words

A propagandistic list of (astro-)particle questions

	rather massive particles?	low mass but very weakly coupled?
Fundamental (pseudo-) scalar particles?	$> (\checkmark)$	> 🕅
Finetuning/Hierarchy?	> 🕱	> 🕅
What appears in UV-completions of the Standard Model?	× ×	> 🕱
Observational puzzles in astroparticle physics	> ?	× ×
What is the nature Dark Matter/Dark Energy?	> 🕱, ?	X <
	$\underbrace{ \begin{array}{c} \text{high energy} \rightarrow \\ \text{Accelerators,} \\ \text{Direct Dark Matter} \\ \text{WiMP detection} \end{array} }$	Weakly Interacting Slim Particles High intensity → laser photons low background, precision Light-shining-through-a-wall

>

Light-Shining-Through-a-wall?

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 4

The Light-shining-through-a-wall principle

> photon propagation \leftrightarrow QED

[nontrivial polarization \rightarrow G. Zavattini's talk]

> shine laser on opaque barrier

[theory: Sikivie '83, v. Bibber '87] [exps:BFRT,

LIPPS, ALPS-I, OSQAR, GammeV]

- > wall blocks all SM processes except neutrino (via W) and "graviton" (both negligible!)
- > Beyond SM: WISPs (sub-eV) traverse wall (weak coupling), reconvert to γ

> some need B-field (spin!)

> Axion = pseudo-scalar pseudo-GSB [Peccei/Quinn'77,Weinberg '78,Wilczek'78] \leftrightarrow 'wash away' the strong CP problem ($d_n < 10^{-26}$ ecm cf. E. Stephensons talk)

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 6

Axion = pseudo-scalar pseudo-GSB $[\texttt{Peccei/Quinn'77,Weinberg'78,Wilczek'78}] \leftrightarrow \texttt{'wash}$ away' the strong CP problem $(d_{mriss}, 10^{-26} \text{ecm} \text{ cf. E. Stephensons talk})$

J. J. Sakurai Prize for Theoretical Particle Physics

Prizes Awards and Fellowships

To recognize and encourage outstanding achievement in particle theory. The prize consists of \$10,000, an allowance for travel to the meeting of the Society at which the prize is to be awarded, and a certificate citing the contributions made by the recipient. It will be presented annually,

Establishment & Support

Programs

Home Particle Physics

This prize was endowed in 1984 as a memorial to and in recognition of the accomplishments of J. J. Sakurai by the family and friends of J. J. Sakurai.

Rules & Eligibility

Nominations are open to scientists of all nationalities regardless of the geographical site at which the work was done. The prize may be awarded to more than one person on a shared basis. The prize will normally be awarded for theoretical contributions made at an early stage of the recipients research career. Nominations are active for three years.

Nomination & Selection Process

This year's deadline has passed. Please check back soon for next year's nomination information and deadline

2013 Selection Committee: James Wells, Chair; H. Murayama; K. Lane; J. Bagger: M Carena

2013 J.J. Sakurai Prize for Theoretical Particle Physics Recipient(s): Helen Ouinn SLAC. Roberto Peccei University of California, Los Angeles

Past Recipients:

2012: Bryan Webber Guido Altarelli Torbiorn Siostrand 2011: Chris Quigg Estia Eichten Ian Hinchliffe Kenneth Lane 2010: Carl R. Hagen Francois Englert Gerald S. Guralnik Peter W. Higgs Robert Brout T.W.B. Kibble 2009: Davison E. Soper Niccolo Cabeo School | May 23rd 2013 | Page 6

Babette Döbrich

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 6

> Axion = pseudo-scalar pseudo-GSB [Peccei/Quinn'77,Weinberg '78,Wilczek'78] \leftrightarrow 'Wash away' the strong CP problem ($d_n < 10^{-26}$ ecm cf. E. Stephensons talk) > m knotted to $f_a \sim 1/g$ > (m, g)-plane: axion-*like* particles

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 6

- > Axion = pseudo-scalar pseudo-GSB [Peccei/Quinn'77,Weinberg '78,Wilczek'78] \leftrightarrow 'wash away' the strong CP problem ($d_n < 10^{-26}$ ecm cf. E. Stephensons talk)
- > m knotted to $f_a \sim 1/g$
- > (m,g)-plane: axion-*like* particles
 - > astrophysics indic.: TeV γ s [1302.1208] + White Dwarf [1204.3565]

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 6

Axion = pseudo-scalar pseudo-GSB [Peccei/Quinn'77,Weinberg '78,Wilczek'78] \leftrightarrow 'wash away' the strong CP problem ($d_n < 10^{-26}$ ecm cf. E. Stephensons talk) m knotted to $f_a \sim 1/g$ (m, g)-plane: axion-like particles > astrophysics indic.: TeV γ s [1302.1208] + White Dwarf [1204.3565] > moduli stab. in intermediate string scale scenarios [1209.2299]

> Dark Matter candidate [1201.5902]

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 6

Axion = pseudo-scalar pseudo-GSB $[Peccei/Quinn'77,Weinberg '78,Wilczek'78] \leftrightarrow 'wash$ away' the strong CP problem $(d_n < 10^{-26} \text{ecm}$ cf. E. Stephensons talk) m knotted to $f_a \sim 1/q$ (m, g)-plane: axion-*like* particles > astrophysics indic.: TeV γ s [1302.1208] + White Dwarf [1204.3565] > moduli stab. in intermediate string scale scenarios [1209.2299] > Dark Matter candidate [1201.5902] Or at least: New territory!

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 6

Axion = pseudo-scalar pseudo-GSB[Peccei/Quinn'77,Weinberg '78,Wilczek'78] ↔ 'wash away' the strong CP problem $(d_n < 10^{-26} \text{ecm}$ cf. E. Stephensons talk) m knotted to $f_a \sim 1/q$ (m, g)-plane: axion-*like* particles > astrophysics indic.: TeV γ s [1302.1208] + White Dwarf [1204.3565] > moduli stab. in intermediate string scale scenarios [1209.2299] > Dark Matter candidate [1201.5902] > Or at least: New territory! search with \vec{B} : $\mathcal{L}_{int,PS} \sim \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$ > solar (e.g. CAST@CERN) > Dark Matter (e.g. ADMX) homemade (ALPS-I, ALPS-II) >Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 6 2002 Sirlin, Marciano

Further WISPs to be discovered with ALPS-II

hidden (dark/heavy) photons from string & field-theory extensions $_{\rm cf.}$ w. Marcianos talk at low mass $\mathcal{L} \sim \chi F_{\mu\nu} X^{\mu\nu} + m_{\tilde{\gamma}}^2/2X_\mu X^\mu$

- Dark Matter candidate & possibly Dark Radiation [0804.4157] however new solar constr' [1302.3884]
- experimentally no need for B-fields, oscillation process
- > ALPS-I, ALPS-IIa, ALPS-IIb
- > if B-field applied, also sensitive to minicharged particles (fractionally charged hidden matter) $\mathcal{L} \sim \chi F_{\mu\nu} X^{\mu\nu} + e \bar{\psi} A \psi + e_{h} \bar{h} X h$

Further WISPs to be discovered with ALPS-II

Shining Light on Modifications of Gravity

Philippe Brax, 1 Clare Burrage 2 and Anne-Christine Davis 3

¹Institut de Physique Théorique, CEA, IPhT, CNRS, URA2306, F-91191 Gif-sur-Yvette cédex, France

 $^2\mathrm{School}$ of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, $_{\mathrm{UK}}$

Figure 3. The constraint of the ALPS experiment on the m, M, A parameter space. All regions below the surface are excluded. The parameters are measured in units of GeV.

In Figure 3 the constraint of the ALPS experiment is shown in the three dimensional parameter space (m, M, Λ) . We see that in almost all of the interesting range fluctuations of Λ is that of the conformally coupled axion-like particle case $\Lambda \gtrsim 10^7$ GeV.

hidden (dark/heavy) photons from string & field-theory extensions $_{\rm cf.}$ w. Marcianos talk at low mass $\mathcal{L} \sim \chi F_{\mu\nu} X^{\mu\nu} + m_{\tilde{\gamma}}^2/2X_\mu X^\mu$

- Dark Matter candidate & possibly Dark Radiation [0804.4157] however new solar constr' [1302.3884]
- experimentally no need for B-fields, oscillation process
- > ALPS-I, ALPS-IIa, ALPS-IIb
- > if B-field applied, also sensitive to minicharged particles (fractionally charged hidden matter) $\mathcal{L} \sim \chi F_{\mu\nu} X^{\mu\nu} + e \bar{\psi} A \psi + e_h \bar{h} X h$

scalar fields of massive gravity theories [1206.1809]

Possible upgrades

> (Even) More photons \rightarrow enhanced probability

Technical realization

> *coupled* cavities on both sides of the wall

Possible upgrades

- > (Even) More photons \rightarrow enhanced probability
- > better single photon detection

Technical realization

- > *coupled* cavities on both sides of the wall
- Transition edge sensor (CCD low Q.E. for inrared)

Possible upgrades

- > (Even) More photons \rightarrow enhanced probability
- > better single photon detection
- > More (magnetic) length

Technical realization

- > *coupled* cavities on both sides of the wall
- Transition edge sensor (CCD low Q.E. for inrared)

- > (Even) More photons \rightarrow enhanced probability
- > better single photon detection
- > More (magnetic) length

- > *coupled* cavities on both sides of the wall
- Transition edge sensor (CCD low Q.E. for inrared)
- > HERA! (92-07) enhance length \rightarrow tunnel

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 9

- > three stages ALPS-II a,b,c
- > Technical design report submitted to DESY PRC in August 2012
- > approval for ALPS-IIa and b in Feb. 2013 and TDR on arXiv:1302.5647

AEI Hannover DESY Universität Hamburg

August 31, 2012

- > three stages ALPS-II a,b,c
- > Technical design report submitted to DESY PRC in August 2012
- > approval for ALPS-IIa and b in Feb. 2013 and TDR on arXiv:1302.5647
- > People and collaborators
 - > 3 institutions (DESY, UHH, AEI)
 - > 4 (part-time) scientists, 3 retired, 2 postdocs, 4 PhD students
 - > tentative expansion!

- > three stages ALPS-II a,b,c
- > Technical design report submitted to DESY PRC in August 2012
- > approval for ALPS-IIa and b in Feb. 2013 and TDR on arXiv:1302.5647
- > People and collaborators
 - > 3 institutions (DESY, UHH, AEI)
 - > 4 (part-time) scientists, 3 retired, 2 postdocs, 4 PhD students
 - > tentative expansion!
- $>~\lesssim 2 M$ for 5 yr thereof $\approx 1 M$ already spent

Outline

> T/P: ALPS-II: Motivation, Goals and Tools Overview

- > E: Laser and optics
- > E: Magnet system
- > E: Detection system
- > More on helio- and haloscopes
- > Closing words

- > coupling the resonators
 - > "photon selfinterference" experiment:
 - arXiv:1101.4089, theory: Hoogeveen/Ziegenhagen
 - > momentum conservation \rightarrow frequency-lock (PDH) the two cavities

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 11

- > coupling the resonators
 - > "photon selfinterference" experiment:
 - arXiv:1101.4089, theory: Hoogeveen/Ziegenhagen
 - > momentum conservation \rightarrow frequency-lock (PDH)
 - the two cavities
 - > lock with green, resonant for infrared (signal)
 - mind the colors!

- > coupling the resonators
 - > "photon selfinterference" experiment:
 - arXiv:1101.4089, theory: Hoogeveen/Ziegenhagen
 - > momentum conservation \rightarrow frequency-lock (PDH) the two cavities
 - lock with green, resonant for infrared (signal)
 - > mind the colors!
- > experimental status
 - > 1m test-proof-of-principle in Hannover (locking ok, PB?)

- > experience sets goal: $PB_{PC} = 5000,$ $PB_{RC} = 40000$
- > pipe aperture limits PB due to clipping

- > experience sets goal: $PB_{PC} = 5000,$ $PB_{RC} = 40000$
- pipe aperture limits PB due to clipping
- > large aperture for ALPS-IIa and b (HERA straight)

- > experience sets goal: $PB_{PC} = 5000,$ $PB_{RC} = 40000$
 - pipe aperture limits PB due to clipping
 - large aperture for ALPS-IIa and b (HERA straight)
 - ALPS-IIc \rightarrow effective aperture 35mm limits to 4+4 dipoles (not enough) at proposed PB but "true" aperture larger (55mm)

- > experience sets goal: $PB_{PC} = 5000,$ $PB_{RC} = 40000$
- > pipe aperture limits PB due to clipping
- large aperture for ALPS-IIa and b (HERA straight)
- > ALPS-IIc → effective aperture 35mm limits to 4+4 dipoles (not enough) at proposed PB but "true" aperture larger (55mm)
- > reestablish "true aperture"?

Outline

- > T/P: ALPS-II: Motivation, Goals and Tools Overview
- > E: Laser and optics
- > E: Magnet system
- > E: Detection system
- > More on helio- and haloscopes
- > Closing words

- > force on cold mass
- pressure screws at lower flanches
- pressure prop at middle and ends
- requires modified suspensions

- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- > requires modified suspensions
- > good to know

- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- > requires modified suspensions
- good to know
 - first tests with "PR" magnet (non-functional)

howto

- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- requires modified suspensions
- good to know
 - first tests with "PR" magnet (non-functional)
 - > real-life tests with ALPS-I magnet

- > force on cold mass
- > pressure screws at lower flanches
- > pressure prop at middle and ends
- > requires modified suspensions
- > good to know
 - > first tests with "PR" magnet (non-functional)
 - > real-life tests with ALPS-I magnet
 - > ultimate setup: 24 spare magnets (unused)
 - > even reversible

Outline

- > T/P: ALPS-II: Motivation, Goals and Tools Overview
- > E: Laser and optics
- > E: Magnet system
- > E: Detection system
- > More on helio- and haloscopes
- > Closing words

Detector requirements and TES working principle

- > Experimental needs
 - > low rates of single infrared photons (<1/h)</p>
 - > high quantum efficiency
 - > low background

Detector requirements and TES working principle

pic ad.: Miller Appl.Phys.Lett. 83/4

- Experimental needs
 - > low rates of single infrared photons (<1/h)</p>
 - > high quantum efficiency
 - > low background
- > TES working principle
 - > TES = superconducting absorber at transition T
 - > fiber \rightarrow guide light there
 - > Photon absorption \rightarrow current change \rightarrow pick up by SQUID

Detector requirements and TES working principle

- Experimental needs
 - > low rates of single infrared photons (<1/h)</p>
 - > high quantum efficiency
 - > low background
- > TES working principle
 - > TES = superconducting absorber at transition T
 - > fiber \rightarrow guide light there
 - > Photon absorption \rightarrow current change \rightarrow pick up by SQUID
 - TES from NIST (and AIST) coated e.g. Tungsten (~ 100mK) or Ti/Au (~ 200mK)

Milli-Kelvin environment

\downarrow control rack

- > 'Entropy' mK environment
 - > dry (helium confined) & compact (only water & electricity)
 - > time at <100mk: 48h
 - > recharge time 1h

Milli-Kelvin environment

- 'Entropy' mK environment
 - > dry (helium confined) & compact (only water & electricity)
 - > time at <100mk: 48h
 - > recharge time 1h
- working principle
 - > 4K pulse-tube stage
 - > isothermal magnetization,
 - adiabatic demagnetization

Milli-Kelvin environment

> 'Entropy' mK environment

- > dry (helium confined) & compact (only water & electricity)
- > time at <100mk: 48h
- > recharge time 1h
- > working principle
 - > 4K pulse-tube stage
 - > isothermal magnetization,
 - adiabatic demagnetization

Outline

- > T/P: ALPS-II: Motivation, Goals and Tools Overview
- > E: Laser and optics
- > E: Magnet system
- > E: Detection system
- > More on helio- and haloscopes
- > Closing words

Dark Matter WISPs (Haloscopes)

- > Axions & some other WISPs $[1201.5902] \rightarrow$ perfect dark matter candidate \rightarrow Haloscope cavity [Sikivie '83]
- paradigmatic for axions: ADMX at Washington
 - > 🙂 VERY sensitive
 - > \odot so far very narrow band

Dark Matter WISPs (Haloscopes)

- Axions & some other WISPs $_{[1201.5902]} \rightarrow$ perfect dark matter candidate \rightarrow Haloscope cavity [Sikivie '83]
- paradigmatic for axions: ADMX at Washington
 - > ③ VERY sensitive
 - > \odot so far very narrow band
- > WISP-DMX (Andrei Lobanov) at DESY for hidden photon DM and axion-like particle DM

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 19

Dark Matter WISPs (Haloscopes)

- > Axions & some other WISPs $[1201.5902] \rightarrow$ perfect dark matter candidate \rightarrow Haloscope cavity [Sikivie '83]
- > paradigmatic for axions: ADMX at Washington
 - > \odot VERY sensitive
 - > \odot so far very narrow band
- > WISP-DMX (Andrei Lobanov) at DESY for hidden photon DM and axion-like particle DM
- broadband searches with dish and detector at *center* [1212.2970]
- > many ideas... little time! ;-)

WISPs from our sun (Helioscopes)

IAXO – the first custom made WISP search

> The International Axion Observatory: Helioscope Toroid reaching $g_{\phi\gamma} \sim 10^{-12} {
m GeV}^{-1}$ I. Irastorza, see

[1201.3849] and [1302.3273]

Outline

- > T/P: ALPS-II: Motivation, Goals and Tools Overview
- > E: Laser and optics
- > E: Magnet system
- > E: Detection system
- > More on helio- and haloscopes
- > Closing words

Take-home messages

ALPS-II...

- looks for light
 beyond-Standard-Model particles
 with the
 'light-shining-through-a-wall'
 principle
- complements well other searches
- combines a variety of techiques and methods (single photon detection, high-finesse cavities, accelerator infrastructure..)
- strives towards discovery (or exclusion) of new particles in 3 stages in the following 4-5 years

Babette Döbrich

The **ALPSians**

- Magnet/Site: Dieter Trines + team
- Detector: Dieter Horns (staff HH), Friederike Januschek (Postdoc), Jan Dreyling-Eschweiler, Jan-Eike von Seggern (PhD)
- Safety/Eng.: Richard Stromhagen
- Howto: Ernst-Axel Knabbe (staff)
- Science case & miscellanea: Axel
 Lindner, Andreas Ringwald (staff),

Babette Döbrich (Postdoc)

Bonus material

Comprehensive ALP exclusion plot

colored regions:

- > Dark green = experiments
- blue: astrophysical/ cosmological
 - gray: astronomical
- light green:
 planned exp.
- > red: favored parameter regions

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 26

Comprehensive HP exclusion plot

Comprehensive MCP exclusion plot

whole story see e.g. [arXiv:1205.2671]

colored regions:

- > Dark green = experiments
 - blue: astrophysical/ cosmological
 - gray: astronomical
- light green:
 planned exp.
- red: favored parameter regions

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 28

TeV transparency recent data [arXiv:1302.1208]

DESY

Dish

Babette Döbrich | Niccolò Cabeo School | May 23rd 2013 | Page 30

Photon signal and TES coupling

- > single photon signals
- > time/ energy resolution $\sim 1 \mu s/\!\sim 0.1 {\rm eV}$, quantum efficiency up to 99% $_{\rm Lita~et~al.,}$

Proc. SPIE 681, 76810D (2010)

- not very fast, but almost background free
- good timing resolution valueable in case of unstable lock
- SQUID array acts as transimpedance element

