Experimental tests of charged Lepton Flavor Violation (cLFV) with µ beams as one of the <u>precision</u> frontiers

> A.M. Baldini Ferrara , scuola N. Cabeo May 24th 2013

# History of LFV experiments



### Muon decay at rest



$$E_{e} = E_{\gamma} = m_{\mu}c^{2}/2 = 52.8 \text{ MeV}$$
  
$$\vec{p}_{e} = -\vec{p}_{\gamma}$$
  
$$t_{e} = t_{\gamma}$$

 $\Rightarrow \text{Energy } (E_e, E_{\gamma})$  $\Rightarrow \text{direction } (\Delta \theta)$  $\Rightarrow \text{Time } (\Delta t)$ 

#### First experiment: B.Pontecorvo and E.P.Hincks, PR 73 (1948) 257





The apparatus used by Pontecorvo and Hincks in 1948

*BR* < 10% (90% CL)

## The following experiments were performed with $\pi^{+}$ beams



### Frankel et al., PRL 8(1962) 123



Surface muon beams: monochromatic low momentum muons ( $P_{\mu} \sim 29 \text{ MeV/c}$ ) can be stopped in thin targets).





2 different kinds of v's: Lederman, Schwartz, Steinberger (driven by the absence of  $\mu \rightarrow e\gamma$ ) G.Danby et al., PRL 9(1962) 36.

•The Standard Model (SM) of Particle Physics was built (also) on the basis of the absence of  $\mu{\rightarrow}e\gamma$ 

- In the SM the difference between quarks and leptons (f.w.c the flavor conservation) is due to the zero mass of neutrinos
- $\mu \rightarrow e\gamma$  was however continued to be considered as "a natural theoretical possibility": Bjorken, Lane and Weinberg PRD 16(1977) 1474.
- Recently: v oscillations (CKM ←→ PMNS) ...

 $\mu \rightarrow e\gamma$  rate in the standard model



The SM predicts an unobservable rate→ very clean channel for new physics searches

#### GUTs: guarks and leptons are deeply connected

• SUSY SU(5) predictions

Lepton Flavour Violation (LFV) induced by finite slepton mixing through radiative corrections

The mixing could be large due to the top-quark mass

 $BR(\mu \rightarrow e\gamma) \approx 10^{-15} \div 10^{-13}$  in SU(5) (larger by ~30 order of magnitudes than SM predictions)



In non-GUT theories we can arbitrarily suppress LFV rates by lowering  $M_{\rm R}$  (or the normalization of  $Y_{\rm n}$ ). This is not possible in GUT frameworks => contribution from quark Yukawas which are  $M_{\rm R}$ -independent



#### Surface muon beams





-  $\mu^+$  from decay at rest of  $\pi^+$  on the target surface (the  $\mu$  range is approx. .1 gr/cm<sup>3</sup>): are totally polarized

- It is then possible to focalize and stop an intense  $\boldsymbol{\mu}$  beam in a thin target



-  $R_{\mu stop} \approx 10^8 s^{-1}$  with a 10% e<sup>+</sup> contamination which can be eliminated by means of an elctrostatic separator

- 3 orders of magnitude higher than the previous muon stop rates + thin target



## Target-E design

#### TARGET CONE

Mean diameter: 450 mm Graphite density: 1.8 g/cm<sup>3</sup> Operating Temperature: 1700 K Irradiation damage rate: 0.1 dpa/Ah Rotational Speed: 1 Turn/s Target thickness: 60 / 40 mm 10 / 7 g/cm<sup>2</sup> Beam loss: 18 / 12 % Power deposition: 30 / 20 kW/mA

#### SPOKES

To enable the thermal expansion of the target cone

BALL BEARINGS \*) Silicon nitride balls, coated with MoS2

Rings and cage silver coated

\*) GMN, Nürnberg, Germany



muSR Workshop at FNAL Oct 17-19, 2012, Daniela Kiselev, Paul Scherrer Institut



#### Life time of the ball bearings



muSR Workshop at FNAL Oct 17-19, 2012, Daniela Kiselev, Paul Scherrer Institut



The sensitivity is limited by the accidental background

$$n_{sig} \propto R_{\mu}$$
,  $n_{phys.b.} \propto R_{\mu}$ ,  $n_{acc.b.} \propto R_{\mu}^2$ 

The n. of acc. backg events  $(n_{acc,b})$  depends quadratically on the muon rateand on how well we measure the experimental quantities:  $e-\gamma$  relative timing and angle, positron and photon energy

Effective BRback (n<sub>back</sub>/Rµ T)

$$BR_{acc} \propto R_{\mu} \times \Delta t_{e\gamma} \times \Delta \theta_{e\gamma}^{2} \times \Delta E_{e} \times \Delta E_{\gamma}^{2}$$

Integral on the detector resolutions of the Michel and radiative decay spectra **Required Performances** 

 $BR(\mu \rightarrow e\gamma) \approx 10^{-13}$  reachable

BRacc.b.  $\approx$  2 10<sup>-14</sup> and BRphys.b.  $\approx$  0.1 BRacc.b. with the following resolutions

| Exp./Lab    | Year | $\Delta E_e/E_e$ (%) | $\begin{array}{c} \Delta E_{\gamma}/E_{\gamma} \\ (\%) \end{array}$ | $\begin{array}{c} \Delta t_{e\gamma} \\ (ns) \end{array}$ | <b>Δθ</b> <sub>eγ</sub><br>(mrad) | Stop rate<br>(s <sup>-1</sup> ) | Duty<br>cyc.(%) | BR<br>(90% CL)          |
|-------------|------|----------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|---------------------------------|-----------------|-------------------------|
| SIN         | 1977 | 8.7                  | 9.3                                                                 | 1.4                                                       | -                                 | 5 x 10 <sup>5</sup>             | 100             | 3.6 x 10 <sup>-9</sup>  |
| TRIUMF      | 1977 | 10                   | 8.7                                                                 | 6.7                                                       | -                                 | 2 x 10 <sup>5</sup>             | 100             | 1 x 10 <sup>-9</sup>    |
| LANL        | 1979 | 8.8                  | 8                                                                   | 1.9                                                       | 37                                | 2.4 x 10 <sup>5</sup>           | 6.4             | 1.7 x 10 <sup>-10</sup> |
| Crystal Box | 1986 | 8                    | 8                                                                   | 1.3                                                       | 87                                | 4 x 10 <sup>5</sup>             | (69)            | 4.9 x 10-11             |
| MEGA        | 1999 | 1.2                  | 4.5                                                                 | 1.6                                                       | 17                                | 2.5 x 10 <sup>8</sup>           | (67)            | 1.2 x 10 <sup>-11</sup> |
| MEG         | 2009 | 0.8                  | 4                                                                   | 0.15                                                      | 19                                | 2.5 x 10 <sup>7</sup>           | 100             | 1 x 10 <sup>-13</sup>   |

FWHM

Need of a DC muon beam





COBRA spectrometer

COnstant Bending RAdius (COBRA) spectrometer

• Constant bending radius independent of emission angles



Uniform field



Low energy positrons quickly swept out









| Process                 |                                                                                                                                 | Energy (MeV)   | Frequency |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Charge exchange         | $\pi^{-} p \to \pi^{0} n$ $\pi^{0} \to \gamma \gamma$                                                                           | 54.9, 82.9     | yearly    |
| Charge exchange         | $\pi^- p \rightarrow n\gamma$                                                                                                   | 129.0          | yearly    |
| Radiative $\mu^+$ decay | $\mu^+ \rightarrow e^+ \gamma \nu \nu$                                                                                          | 52.83 endpoint | weekly    |
| Proton accelerator      | $^{7}\text{Li}(p, \gamma_{17.6(14.8)})^{8}\text{Be}$                                                                            | 14.8, 17.6     | weekly    |
|                         | $^{11}B(p, \gamma_{4.4}\gamma_{11.6})^{12}C$                                                                                    | 4.4, 11.6      | weekly    |
| Nuclear reaction        | $^{58}Ni(n, \gamma_{9.0})^{59}Ni$                                                                                               | 9.0            | daily     |
| AmBe source             | ${}^{9}\text{Be}(\alpha_{241}\text{Am}, n){}^{12}\text{C}_{*}$ ${}^{12}\text{C}_{*} \rightarrow {}^{12}\text{C}_{\gamma_{4.4}}$ | 4.4            | daily     |



## Energy resolution

Measured using 55 MeV CEX gamma rays



e

Resolution map









### 

## Physics Analysis in MEG

- Maximum likelihood analysis to extract Nsignal
  - Observables: E<sub>γ</sub>, E<sub>e</sub>, T<sub>eγ</sub>, θ<sub>eγ</sub>, Φ<sub>eγ</sub>
  - PDFs are formed mostly from data.
    - Signal: Measured resolutions
    - Accidental BG : Measured spectrum in sidebands
    - RMD: Theoretical spectrum smeared by detector resolutions
- Different likelihood analyses performed to check systematics
  - PDF: Event-by-event PDF, different PDFs according to tracking quality, averaged PDF
  - Statistical approach: Frequentist, Bayesian

$$\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}}) = \frac{N^{N_{\text{obs}}} \exp^{-N}}{N_{\text{obs}}!} \prod_{i=1}^{N_{\text{obs}}} \left[ \frac{N_{\text{sig}}}{N} S + \frac{N_{\text{RMD}}}{N} R + \frac{N_{\text{BG}}}{N} B \right]$$

$$\text{PDF= Probability}$$

$$\text{Distribution Function} \qquad \qquad \text{Signal PDF} \quad \text{RMD PDF} \quad \text{BG PDF}$$



## 2009-2011 data







## Expected final sensitivity



Data taking will be done until Summer 2013 Since 2012, 15% higher beam rate is used

Observed limits and sensitivity



## MEG upgrade





## 

#### μ<sup>+</sup>→e<sup>+</sup>e<sup>+</sup>e<sup>-</sup> background signal accidental $\mu \rightarrow eee$ $\mu \rightarrow e \nu \nu$ correlated e\* $\mu \rightarrow e \nu \nu$ (prompt) e⁺e⁻ →e⁺e⁻ e+ $\mu \rightarrow e e e \nu \nu$ Σp<sub>i</sub>=0 e⁺ ν e+ Vertex $\Sigma E_e = m_{\mu}$ e. te+ = te+ = te-

# Accidental Background



- Combination of positrons from ordinary muon decay with electrons from:
  - photon conversion,
  - Bhabha scattering,
  - Mis-reconstruction
- Need very good timing, vertex and momentum resolution

### $\mu^+ \rightarrow e^+ e^+ e^-$ : SINDRUM I

- Present limit B( $\mu \rightarrow 3e$ ) < 1x10<sup>-12</sup> • U.Bellgardt et al. Nucl.Phys. B299(1988)1
- Proposal at PSI to reach 10<sup>-15</sup> in a first phase and 10<sup>-16</sup> in a later one

### SINDRUM I parameters

- beam intensity \_
- $\mu^+$  momentum
- magnetic field
- acceptance
- momentum resolution
- vertex resolution
- timing resolution
- target length
- target density



42

0.33T

24%

 $\sim$  ns

220 mm

 $11 \text{ mg/cm}^2$ 

10% FWHM

 $2 \text{ mm}^2 \text{FWHM}$ 



# - The High-Intensity Muon Beamline (HIMB)



- Muon rates in excess of
  - 10<sup>10</sup>/s in acceptance
- $2.10^{\circ}$ /s needed for  $\mu \rightarrow \text{eee}$  at  $10^{-16}$
- Not before 2017

Same beam as MEG for the first phase

44









- 50 µm silicon pixel detectors (HV-MAPS)
- 25 µm Kapton<sup>™</sup> flexprint with aluminium traces
- 25 µm Kapton™ frame as support
- Less than 1‰ of a radiation length per layer



# Severe cooling problems

5





#### $\mu^{-} \rightarrow e^{-}$ conversion









# The Mu2e Experiment



- Goal: Discover µN→eN conversion
- Target sensitivity:  $R_{\mu e} = 6 \times 10^{-17}$  @ 90% C.L.
  - 4 orders of magnitude better than current limits
- Requires ~ 10<sup>18</sup> stopped muons 10<sup>10÷11</sup>muons/sec
  - ~ 4×10<sup>20</sup> protons on target (3 year run @ 8 KW)
- Requires negligible (<1) background events</li>
- Many challenges for the beamline and detector design

50





# **Cosmic Ray Backgrounds**





 Dedicated Cosmic Ray Veto (CRV) detector

- Overlapping scintillation counters
- 99.99% efficiency
- Rejection also from tracker, calorimeter

David Brown, Lawrence Berkeley National Lab

29

mu2e conversion at FNAL

CLFV, Lecce, 2013

53

# Mu2e Signal Sensitivity

Full G4 detector simulation, background overlay, reconstruction



Starting in 2016 Measurement in 2017 S.E.S = 3 x 10<sup>-15</sup>

# COMET (Phase-I)



#### Starting in 2020 Measurement in 2022 S.E.S = 3 x 10<sup>-17</sup>

# COMET (Phase-II)



# **Proton Beam Acceleration**





- Precision really plays a major role in cLFV experiments !
- It may be that  $\mu \rightarrow e\gamma$  has met the current technological limits
- possible big improvements can be foreseen especially for  $\mu \rightarrow e$  conversion
- we hope to be more lucky in the near future