Radiative corrections to lepton-hadron interactions

Andrej Arbuzov

Niccol Cabeo School, Ferrara, 23-28 May 2011

May 25, 2011
PART I
What are Radiative Corrections (RC)?

Types of RC and the present status of their calculation

Application of RC to specific processes

RC in Monte Carlo codes

One-loop RC: the scheme of calculation
What are RC?

- “Radiative corrections” are quantum effects which contribute to observable quantities in higher orders of the Planck constant.
What are RC?

- "Radiative corrections" are quantum effects which contribute to observable quantities in higher orders of the Planck constant.
- In other words, RC is something which appears beyond the Born approximation...
What are RC?

- “Radiative corrections” are quantum effects which contribute to observable quantities in higher orders of the Planck constant.
- In other words, RC is something which appears beyond the Born approximation.
- So the first step is to choose the proper Born approximation. Certain effects of higher orders in \hbar are included sometimes in the so-called improved Born approximation. Beware!
What are RC?

- "Radiative corrections" are quantum effects which contribute to observable quantities in higher orders of the Planck constant.

- In other words, RC is something which appears beyond the Born approximation . . .

- So the first step is to choose the proper Born approximation. Certain effects of higher orders in \hbar are included sometimes in the so-called improved Born approximation. Beware!

- RC can be confused with background processes. Typically RC are just some modifications of the basic process, while background corresponds to other processes which only look similar to the basic one in the detector.
What are RC?

- “Radiative corrections” are quantum effects which contribute to observable quantities in higher orders of the Planck constant.

- In other words, RC is something which appears beyond the Born approximation . . .

- So the first step is to choose the proper Born approximation. Certain effects of higher orders in \hbar are included sometimes in the so-called improved Born approximation. Beware!

- RC can be confused with background processes. Typically RC are just some modifications of the basic process, while background corresponds to other processes which only look similar to the basic one in the detector.

- “Corrections” usually mean small modifications. It is really so for many cases, but NOT for all. Beware!
What are RC?

- “Radiative corrections” are quantum effects which contribute to observable quantities in higher orders of the Planck constant.

- In other words, RC is something which appears beyond the Born approximation . . .

- So the first step is to choose the proper Born approximation. Certain effects of higher orders in \hbar are included sometimes in the so-called improved Born approximation. Beware!

- RC can be confused with background processes. Typically RC are just some modifications of the basic process, while background corresponds to other processes which only look similar to the basic one in the detector.

- “Corrections” usually mean small modifications. It is really so for many cases, but NOT for all. Beware!

- RC is the subject of a tight collaboration between theoreticians and experimentalists.
Physics is a *natural science*:

Experiment \oplus Theory
Why do we need RC? (I)

- Physics is a natural science:
 Experiment \oplus Theory

- Physics is an exact science:
 Accurate Experiment \oplus Theory with sub-leading effects
Why do we need RC? (I)

- Physics is a **natural science**:

 \[\text{Experiment} \oplus \text{Theory} \]

- Physics is an **exact science**:

 \[\text{Accurate Experiment} \oplus \text{Theory with sub-leading effects} \]

- Experimental accuracy:

 \[\delta^{\text{exp}} = \delta^{\text{syst}} \oplus \delta^{\text{stat}} \]
Why do we need RC? (I)

- Physics is a natural science:
 Experiment \oplus Theory

- Physics is an exact science:
 Accurate Experiment \oplus Theory with sub-leading effects

- Experimental accuracy:
 $$\delta^{\text{exp}} = \delta^{\text{syst}} \oplus \delta^{\text{stat}}$$

- Then the theoretical uncertainty should be
 $$\delta^{\text{theor}} \lesssim \delta^{\text{exp}} / 3$$
Why do we need RC? (I)

- Physics is a natural science:
 \[
 \text{Experiment} \oplus \text{Theory}
 \]

- Physics is an exact science:
 \[
 \text{Accurate Experiment} \oplus \text{Theory with sub-leading effects}
 \]

- Experimental accuracy:
 \[
 \delta^{\text{exp}} = \delta^{\text{syst}} \oplus \delta^{\text{stat}}
 \]

- Then the theoretical uncertainty should be
 \[
 \delta^{\text{theor}} \lesssim \delta^{\text{exp}}/3
 \]

- Experimental precision is continuously growing up:
 \[
 \text{hardware} \oplus \text{analysis techniques} \oplus \text{exposition time} \ldots
 \]
Why do we need RC? (I)

- Physics is a **natural science**:
 Experiment \oplus Theory

- Physics is an **exact science**:
 Accurate Experiment \oplus Theory with sub-leading effects

- Experimental accuracy:

 $\delta^{\text{exp}} = \delta^{\text{syst}} \oplus \delta^{\text{stat}}$

- Then the theoretical uncertainty should be

 $\delta^{\text{theor}} \lesssim \delta^{\text{exp}} / 3$

- Experimental precision is continuously growing up:
 hardware \oplus analysis techniques \oplus exposition time . . .

- Theoretical accuracy should be adequate, so we need more and more RC
Why do we need RC? (II)

NEW PHYSICS!!!
Why do we need RC? (II)

- NEW PHYSICS!!!

- New physics = Observations − Predictions
Why do we need RC? (II)

NEW PHYSICS!!!

- New physics = Observations − Predictions

- Predictions = Standard Model theoretical calculations
Why do we need RC? (II)

- NEW PHYSICS!!!
 - New physics = Observations − Predictions
 - Predictions = Standard Model theoretical calculations
 - ⊕ low-energy strong interaction effects
Why do we need RC? (II)

NEW PHYSICS!!!

- New physics = Observations − Predictions
- Predictions = Standard Model theoretical calculations
- ⊕ low-energy strong interaction effects
- LHC scenarios . . .
Why do we need RC? (II)

NEW PHYSICS!!!

- New physics = Observations − Predictions
- Predictions = Standard Model theoretical calculations
- ⊕ low-energy strong interaction effects
- LHC scenarios . . .
- RC for discrimination of various new physics models
Radiative Corrections

Perturbative, Non-perturbative, Re-summed perturbative

$O(\alpha) \equiv \text{one-loop, two-loop, etc.}$

According to interaction types:

QED Electroweak (EW) QCD non-SM

In practice we always have a mixture of ALL types of RC

One of our tasks is to disentangle the mixture

- All relevant perturbative RC are already computed

The main method is to find a small parameter and expand in it
Types of RC

Radiative Corrections

Perturbative, Non-perturbative, Re-summed perturbative

\(\mathcal{O}(\alpha) \equiv \) one-loop, two-loop, etc.

According to interaction types:

QED, Electroweak (EW), QCD, non-SM

In practice we always have a mixture of ALL types of RC

One of our tasks is to disentangle the mixture

- All relevant perturbative RC are already computed
- it’s a MYTH! (even for QED RC)

The main method is to find a small parameter and expand in it
Fit of the Higgs boson mass from LEP data [arXiv:0712.0929(hep-ex)]

$$m_{\text{H}} \text{ [GeV]}$$

$${Dc}^2 = D_c(5)$$

$$0.02758 \pm 0.00035$$

$$0.02749 \pm 0.00012$$

incl. low Q^2 data

Theory uncertainty

$$m_{\text{Limit}} = 144 \text{ GeV}$$

ZFITTER, TOPAZO, ... Remind LEP's fit $m_t \approx 172 \text{ GeV}$
As a small parameter we can take the fine structure constant

\[\alpha \approx \frac{1}{137} \]

J. Schwinger: the proper parameter is

\[\frac{\alpha}{2\pi} \approx 0.12\% \text{, } \left(\frac{\alpha}{2\pi} \right)^2 \approx 1.3 \cdot 10^{-4} \% \]

So perturbative QED RC as series in \(\alpha \) should (???) converge rapidly

In practice (and theory) it is not so simple. There can be other small parameters (e.g. \(m^2/Q^2 \ll 1 \)) and large enhancement factors due to kinematics or large logarithms.
Logarithmic approximations

For large energies we have Large Logs:

$$L = \ln\left(\frac{Q^2}{\mu_0^2}\right) \quad \mu = m_e, \Lambda_{\text{QCD}}, \ldots$$

e.g., \(\ln\left(\frac{M_Z^2}{m_e^2}\right) \approx 24, \quad \ln\left(\frac{m_{\mu}^2}{m_e^2}\right) \approx 11\)

Double log approximation (Sudakov logs):
\(O\left(\alpha^n L^{2n}\right), \quad n = 0, 1, 2, \ldots\)

Leading log approximation (“LLA” in QED and “LO” in QCD):
\(O\left(\alpha^n L^n\right), \quad n = 0, 1, 2, \ldots\)

Next-to-Leading log approximation (“NLO”):
\(O\left(\alpha^n L^{n-1}\right), \quad n = 1, 2, \ldots\)
Small angle Bhabha scattering (SABS) was used at LEP to measure the luminosity.

So the theoretical uncertainty in SABS description contributed to the errors in all LEP results.

\[
\sigma^{\text{Corrected}}(x_c) = \sigma^{\text{Born}}(x_c) \left[1 + \sum \delta_i / 100\% \right]
\]

In spite of our efforts, the theoretical precision was worse than the experimental one!

It should be improved before ILC
(There are already some updates: new 2-loop results)
Many analytical results are in the literature (QED, QCD, EW)
Many analytical results are in the literature (QED, QCD, EW)

Advanced techniques of multi-loop and multi-leg diagrams are developed
Many analytical results are in the literature (QED, QCD, EW)

Advanced techniques of multi-loop and multi-leg diagrams are developed

Still application of (even) well known results to a concrete case is rather non-trivial:
- old analytic calculations can have obsolete approximations
- different effects should be combined properly
- experimental conditions should be taken into account
Many analytical results are in the literature (QED, QCD, EW)

Advanced techniques of multi-loop and multi-leg diagrams are developed

Still application of (even) well known results to a concrete case is rather non-trivial:
- old analytic calculations can have obsolete approximations
- different effects should be combined properly
- experimental conditions should be taken into account

Semi-analytic codes are well suited for inclusion of different effects (ZFITTER, HECTOR, etc.)
Many analytical results are in the literature (QED, QCD, EW).

Advanced techniques of multi-loop and multi-leg diagrams are developed.

Still application of (even) well known results to a concrete case is rather non-trivial:
- old analytic calculations can have obsolete approximations
- different effects should be combined properly
- experimental conditions should be taken into account

Semi-analytic codes are well suited for inclusion of different effects (ZFITTER, HECTOR, etc.)

But the best way is to incorporate RC into Monte Carlo (MC) simulators. Not simple — RC have complicated kinematics.
Many analytical results are in the literature (QED, QCD, EW)

Advanced techniques of multi-loop and multi-leg diagrams are developed

Still application of (even) well known results to a concrete case is rather non-trivial:
- old analytic calculations can have obsolete approximations
- different effects should be combined properly
- experimental conditions should be taken into account

Semi-analytic codes are well suited for inclusion of different effects (ZFITTER, HECTOR, etc.)

But the best way is to incorporate RC into Monte Carlo (MC) simulators. Not simple — RC have complicated kinematics

Dedicated MC (for a specific process) vs General purpose MC (PYTHIA, HERWIG, PHOTOS)
One-loop RC (I)

$\mathcal{O}(\alpha)$ correction is a very standard thing: "MUST HAVE"

Typically we decompose it into 3 parts:

- Virtual (loop) corrections: involved calculations
- Soft photon radiation: easy to compute
- Hard photon radiation: keep completely differential for MC

$$\sigma^{1\text{-loop corr.}} = \sigma^{\text{Born}} + \sigma^{\text{Virt}}(\lambda) + \sigma^{\text{Soft}}(\lambda, \bar{\omega}) + \sigma^{\text{Hard}}(\bar{\omega})$$

λ is an infrared regulator, e.g. fictitious photon mass ($\lambda \ll m, E$)

$\bar{\omega}$ is a soft-hard separator (phase space splitting) the maximal energy of a soft photon \equiv minimal energy of a hard one in a certain reference frame ($\lambda \ll \bar{\omega} \ll E$)
Results for QED RC in $\mathcal{O}(\alpha)$ are known practically for all Standard Model processes (with up-to 6 legs).

But for certain cases we have to revise results, even for “classic processes”, e.g.

$$\mu + A \rightarrow \mu + \gamma + A$$

for COMPASS experiment

$$\mu \rightarrow e + \nu_\mu + \bar{\nu}_e$$

for TWIST experiment
RC to High Energy Lepton Bremsstrahlung on Heavy Nuclei

Several relevant effects beyond the Born approximation:

- $\mathcal{O}(\alpha)$ corrections to the lepton tensor
- vacuum polarization
- multiple photon exchange with the nucleus
- electromagnetic nuclear elastic and inelastic form factors
- screening of the nucleus by the electrons surrounding it
- inelastic interactions with the atomic electrons
Results for COMPASS conditions ($E_\mu = 190\text{GeV}, \quad Z = 82, \ldots$)

<table>
<thead>
<tr>
<th>ω/E_1</th>
<th>Born</th>
<th>Virtual</th>
<th>Soft$_1$</th>
<th>Hard$_1$</th>
<th>δ_1, %</th>
<th>Soft$_2$</th>
<th>Hard$_2$</th>
<th>δ_2, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>15677(1)</td>
<td>76.8(4)</td>
<td>-260.1(1)</td>
<td>226.9(3)</td>
<td>+0.28</td>
<td>-307.0(1)</td>
<td>273.7(3)</td>
<td>+0.28</td>
</tr>
<tr>
<td>0.5</td>
<td>10836(1)</td>
<td>77.9(2)</td>
<td>-319.0(1)</td>
<td>280.0(3)</td>
<td>+0.36</td>
<td>-377.4(1)</td>
<td>338.1(3)</td>
<td>+0.36</td>
</tr>
<tr>
<td>0.7</td>
<td>7337.7(1)</td>
<td>76.9(2)</td>
<td>-363.3(1)</td>
<td>297.1(2)</td>
<td>+0.15</td>
<td>-430.9(1)</td>
<td>364.8(2)</td>
<td>+0.15</td>
</tr>
<tr>
<td>0.9</td>
<td>1267.4(1)</td>
<td>20.5(1)</td>
<td>-111.1(2)</td>
<td>65.9(1)</td>
<td>−1.95</td>
<td>-132.4(2)</td>
<td>87.2(1)</td>
<td>−1.95</td>
</tr>
</tbody>
</table>

Rule: **the more you cut the more you get**
\[\frac{d^2 \Gamma^{(1)}}{dx dc} = \Gamma_0 x^2 \beta \frac{\alpha}{2\pi} \left(f_1(x) + c \xi g_1(x) \right), \quad L = \ln \frac{m_{\mu}^2}{m_e^2}, \quad \beta = \sqrt{1 - \frac{m_e^2}{E_e^2}} \]

\[f_1(x) = f^{\text{Born}}(x) \left(\frac{2}{\beta} A + \frac{x^2 (1 - \beta^2) - 4 (1 + x \beta)}{2 x \beta} \ln \frac{q^2}{m_{\mu}^2} + \frac{4 - x^2 (1 - \beta^2)}{x \beta} \ln \frac{2 - x (1 - \beta)}{2} \right) \]

\[+ \frac{1}{\beta} \left(L + 2 \ln x + 2 \ln \frac{1 + \beta}{2} \right) \left\{ \frac{5 x^4}{384} (1 - \beta^2)^3 - \frac{x^3}{4} (1 - \beta^2)^2 + \frac{3 x^2}{32} (3 - 12 \beta + \beta^2) (1 - \beta^2) \right\} \]

\[+ x \left[\frac{2}{3} + 2 \beta + (1 - \beta^2) \left(\frac{3}{2} + \beta \right) \right] + \frac{1}{8} [-20 - 12 \beta - 19 (1 - \beta^2)] + \frac{2}{x} + \frac{5}{6 x^2} \]

\[+ \left(\ln x + \ln \frac{1 + \beta}{2} \right) \left[\frac{9}{4} x^2 (1 - \beta^2) + 2 x (\beta^2 - 3) + 3 \right] + f^{\text{Born}}(x) \left[-\frac{11}{18} x (1 - \beta^2) + \frac{22}{27} \beta^2 - \frac{2}{9} \right] \]

\[+ x \left(-\frac{22}{27} \beta^4 + \frac{\beta^2}{2} - \frac{11}{6} \right) + \frac{22}{9} (3 - \beta^2) - \frac{22}{3 x}, \]

\[A = L \left(\ln \frac{q^2}{m_{\mu}^2} - \ln x + \ln \frac{1 + \beta}{2 \beta} + \ln \frac{2 - x (1 - \beta)}{2 \beta} \right) + \left[\ln \frac{q^2}{m_{\mu}^2} - 2 \ln x + 2 \ln \frac{1 + \beta}{2} \right. \]

\[+ 4 \ln \frac{2 - x (1 - \beta)}{2 \beta} \left(\ln x + \ln \frac{1 + \beta}{2} \right) + 2 \text{Li}_2 \left(\frac{(1 - \beta)(2 - x (1 + \beta))}{(1 + \beta)(2 - x (1 - \beta))} \right) - 2 \text{Li}_2 \left(\frac{2 - x (1 + \beta)}{2 - x (1 - \beta)} \right), \]

\[g_1(x) = \ldots \]
Modern approach to $\mathcal{O}(\alpha)$ RC

Semi-automatic analytic \oplus numeric calculations
some representatives:

FeynArts — a Mathematica package for generation and visualization of Feynman diagrams

FeynCalc — a Mathematica package for algebraic calculations in elementary particle physics

LoopTools — a package for evaluation of scalar and tensor one-loop integrals

GRACE-loop — a generic automated package for the calculation of Feynman diagrams at one-loop

SANC — ...