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Abstract
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1 Historical introduction

Transverse spin and transverse momentum effects are by now recognized as a funda-

mental sector of high-energy hadronic phenomenology (for reviews, see Refs. [1, 2, 3]).

In the early 90’s some authors [4, 5, 6, 7] rediscovered the distribution of transversely

polarized quarks in a transversely polarized nucleon first introduced by Ralston and

Soper in 1979 [8]. This distribution, called “transversity” and denoted by h1(x) or by

∆T q, is a leading-twist quantity that contributes dominantly to the double transverse

asymmetry in Drell-Yan (DY) production. Due to its chiral-odd nature, however, h1

is not measurable in inclusive deep inelastic scattering.

Various proposals were soon put forward to measure the transversity distribution

[9, 10, 11, 12, 13, 14, 15]. This work eventually led to to a detailed investigation of

transverse momentum phenomena in hadrons. Transverse spin, in fact, couples quite

naturally to the intrinsic transverse momentum of quarks. The resulting correlations

are described by various transverse-momentum dependent distribution and fragmenta-

tion functions, which give rise to a myriad of single-spin and azimuthal asymmetries

[16, 17, 11, 18, 19, 20, 21].

It was Sivers who first suggested that single-spin asymmetries could originate, at

leading twist, from the intrinsic motion of quarks in the colliding hadrons [16, 17].

His idea was that there exists an azimuthal asymmetry of unpolarized quarks in a

transversely polarized hadron (the so-called “Sivers effect”). Although phenomenolog-

ically successful [22], this mechanism seemed at first glimpse to violate time-reversal

(T ) invariance. Collins proposed an alternative mechanism, based on a spin asymme-

try in the fragmentation of transversely polarized quarks into an unpolarized hadron

(the “Collins effect”), which is not forbidden by T -invariance due to final-state inter-

actions [11]. While the Sivers effect involves a T -odd transverse-momentum dependent

distribution function, now commonly called f⊥
1T , the Collins effect involves a transverse-

momentum dependent fragmentation function, H⊥
1 .

It is known [23] that in inclusive deep inelastic scattering (DIS) transverse single-

spin asymmetries (SSA’s) are prohibited by time-reversal invariance at lowest order in

αem. This argument, however, does not hold in semi-inclusive DIS (SIDIS), where there

are no first principles forbidding SSA’s. These asymmetries are indeed non vanishing,

as shown in the last decade by various experiments. In particular, HERMES [24] and

COMPASS [25, 26], measuring SIDIS with transversely polarized targets, showed clear

evidences of sizable transverse SSA’s.

On the theoretical side, Brodsky, Hwang and Schmidt [27, 28] proved by an explicit

calculation that final-state interactions in SIDIS, arising from gluon exchange between

the struck quark and the nucleon remnant, or initial-state interactions in DY, pro-
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duce a non-zero Sivers asymmetry. The situation was further clarified by Collins [29]

who pointed out that, taking correctly into account the gauge links in the transverse-

momentum dependent distributions (TMD’s), time-reversal invariance does not imply

a vanishing f⊥
1T , but rather a sign difference between the Sivers distribution measured

in SIDIS and the same distribution measured in DY.

Another important asymmetry source is related to the so-called Boer-Mulders func-

tion [30], a (näıvely) T -odd TMD that measures the transverse-spin asymmetry of

quarks inside an unpolarized hadron. The Boer-Mulders mechanism produces cosφ

and cos 2φ azimuthal modulations in the cross sections of unpolarized SIDIS and DY

processes.

In QCD, the TMD description of hard processes is supported by a non-collinear

factorization theorem at low PT (i.e., PT ≪ Q), which has been proven for SIDIS

and DY [31, 32]. It is also known that twist-3 collinear effects, expressed by quark-

gluon correlation functions, can produce single-spin and azimuthal asymmetries at high

transverse momenta, PT ≫ M [33, 34, 35]. Thus, there is an overlap region where both

the collinear twist-3 factorization and the non-collinear factorization should be valid.

The relation between these two pictures, that is, between the T -odd TMD’s on one

side and the multiparton correlators on the other side, has been clarified in a series of

papers [36, 37, 38].

2 Deep inelastic scattering

The reaction that has first contributed to unveiling the structure of hadrons is deep

inelastic scattering (DIS). This will be our starting point.

Consider the inclusive lepton–nucleon scattering

l(ℓ) + N(P ) → l′(ℓ′) + X(PX) , (1)

where X is an undetected hadronic system. In the neutral current case (l = l′ = e, µ),

if the momentum transfer is not very large, this process is dominated by one-photon

exchange (Fig. 1).

The reaction (1) is described by three kinematic variables. One of them (the energy

E of the incoming lepton, or equivalently the squared c.m. energy s = (ℓ + P )2)) is

experimentally fixed. The other two variables can be chosen among the invariants (M

is the nucleon mass)

q2 ≡ −Q2 = (ℓ− ℓ′)2 (squared momentum transfer) (2)

W 2 = (P + q)2 , (3)

ν =
P · q
M

=
W 2 +Q2 −M2

2M
, (4)
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Figure 1: Deep inelastic scattering.

xB =
Q2

2P · q =
Q2

2Mν
=

Q2

Q2 +W 2 −M2
(Bjorken’s variable) , (5)

y =
P · q
P · ℓ =

W 2 +Q2 −M2

s−M2
. (6)

In the target rest frame ν is the energy transfer, i.e. ν = E − E ′ (E and E ′ are the

incoming and outgoing lepton energies, respectively), and y (sometimes called “inelas-

ticity”) is the fraction of the incoming lepton energy carried away by the exchanged

photon, y = ν/E. A useful relation is

xB y =
Q2

s−M2
≃ Q2

s
. (7)

Since W 2 ≥ M2 (W is the c.m. energy of the γ∗N system, that is, the invariant

mass of the hadronic system X), Bjorken’s variable xB takes values between 0 and 1.

The deep inelastic scattering regime, or Bjorken limit, corresponds to

ν, Q2 → ∞, with xB =
Q2

2Mν
fixed .

In this limit all hadronic masses can be neglected.

The DIS cross section reads

d3σ =
1

4 (ℓ · P )

∑

sl′

∑

X

∫
d3P X

(2π)3 2EX

×(2π)4 δ4(P + ℓ− PX − ℓ′) |M|2 d3ℓ′

(2π)3 2E ′
. (8)
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The squared amplitude in (8) is

|M|2 =
e4

q4

∑

sl′

[ul′(ℓ
′, sl′)γµul(ℓ, sl)]

∗
[ul′(ℓ

′, sl′)γνul(ℓ, sl)]

×〈X|Jµ(0)|P, S〉∗〈X|Jν(0)|P, S〉 . (9)

Note that in eq. (8) and eq. (9) we summed over the final lepton spin (sl′) but did

not average over the initial lepton spin (sl), nor sum over the hadron spin (S). Thus

we are describing, in general, the scattering of polarized leptons on a polarized target,

with no measurement of the outgoing lepton polarization.

We introduce now the hadronic tensor W µν ,

W µν =
1

(2π)

∑

X

∫
d3P X

(2π)3 2EX

(2π)4 δ4(P + q − PX)

×〈P, S|Jµ(0)|X〉〈X|Jν(0)|P, S〉, (10)

and the leptonic tensor Lµν ,

Lµν =
∑

sl′

[
ūl′(ℓ

′, sl′)γµul(ℓ, sl)
]∗ [

ūl′(ℓ
′, sl′)γνul(ℓ, sl)

]

= Tr

[
(/ℓ +ml)

1

2
(1 + γ5/sl) γµ (/ℓ

′
+ml) γν

]
, (11)

so that the DIS cross section takes the form

d3σ =
1

4 ℓ·P
e4

Q4
Lµν W

µν 2π
d3ℓ′

(2π)3 2E ′
. (12)

Using the integral representation of the delta function and translational invariance,

the hadronic tensor can be rewritten as

W µν =
1

2π

∫
d4ξ eiq·ξ 〈P, S|Jµ(ξ)Jν(0)|P, S〉 . (13)

It is important to recall that the matrix elements in eq. (13) are connected. Therefore,

vacuum transitions of the form 〈0|Jµ(ξ)Jν(0)|0〉 〈P, S|P, S〉 are excluded.

In the target rest frame, where ℓ·P = ME, eq. (12) reads

d2σ

dE ′ dΩ
=

α2
em

2MQ4

E ′

E
LµνW

µν , (14)

where dΩ = d cosϑ dϕ. In terms of the invariants defined above the cross section

becomes
d3σ

dx dy dϕ
=
α2

emy

2Q4
LµνW

µν . (15)

The leptonic tensor Lµν can be decomposed into a symmetric and an antisymmetric

part under µ ↔ ν interchange

Lµν = L(S)
µν (ℓ, ℓ′) + L(A)

µν (ℓ, sl; ℓ
′) , (16)
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and, computing the trace in eq. (11), we obtain (retaining lepton masses)

L(S)
µν = 2[ℓµℓ

′
ν + ℓνℓ

′
µ − gµν (ℓ·ℓ′ −m2

l )] , (17)

L(A)
µν = 2iml ǫµνρσs

ρ
ℓ (ℓ− ℓ′)σ . (18)

If the incoming lepton is longitudinally polarized, its spin vector is

sµ
l =

λl

ml
ℓµ, λl = ±1 , (19)

and eq. (18) becomes

L(A)
µν = 2iλl ǫµνρσℓ

ρ(ℓ− ℓ′)σ = 2λl ǫµνρσℓ
ρqσ . (20)

Note that the lepton mass ml appearing in eq. (18) has been cancelled by the denom-

inator of eq. (19). In contrast, if the lepton is transversely polarized, that is sµ
l = sµ

l⊥,

no such cancellation occurs and the process is suppressed by a factor ml/E.

Neglecting, as usual, lepton masses, the leptonic tensor then reads

Lµν = L(S)
µν + L(A)

µν

= 2(ℓµℓ
′
ν + ℓνℓ

′
µ − gµνℓ · ℓ′) − 2iλl εµνρσℓ

ρℓ′σ. (21)

The hadronic tensor Wµν admits a similar decomposition

Wµν = W (S)
µν (q, P ) +W (A)

µν (q;P, S) , (22)

into a symmetric and an antisymmetric part, which are expressed in terms of two pairs

of structure functions, W1, W2 and G1, G2, as

1

2M
W (S)

µν =

(
−gµν +

qµqν
q2

)
W1(ν, q

2)

+
1

M2

[(
Pµ − P ·q

q2
qµ

)(
Pν −

P ·q
q2

qν

)]
W2(ν, q

2) , (23)

1

2M
W (A)

µν = i ǫµνρσ q
ρ

{
MSσ G1(ν, q

2)

+
1

M

[
P ·q Sσ − S·q P σ

]
G2(ν, q

2)

}
. (24)

Equations (23, 24) are the most general expressions compatible with the requirements

of gauge invariance and parity invariance.

Using (16, 22) the cross section (14) becomes

d2σ

dE ′ dΩ
=

α2
em

2MQ4

E ′

E

[
L(S)

µν W
µν (S) + L(A)

µν W
µν (A)

]
. (25)
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It is customary to introduce the dimensionless structure functions

F1(xB, Q
2) ≡MW1(ν,Q

2), F2(xB, Q
2) ≡ ν W2(ν,Q

2) . (26)

g1(xB, Q
2) ≡M2ν G1(ν,Q

2) , g2(xB, Q
2) ≡ Mν2 G2(ν,Q

2) . (27)

In the Bjorken limit, the functions F1, F2, g1, g2 are expected to scale approximately,

that is, to depend on xB only. In terms of F1 and F2 the symmetric part of the hadronic

tensor reads

W (S)
µν = 2

(
−gµν +

qµqν
q2

)
F1(xB, Q

2)

+
2

P ·q

[(
Pµ − P ·q

q2
qµ

)(
Pν −

P ·q
q2

qν

)]
F2(xB, Q

2) , (28)

whereas in terms of g1 and g2 the antisymmetric part of the hadronic tensor reads

W (A)
µν =

2M ǫµνρσ q
ρ

P ·q

{
Sσ g1(xB, Q

2)

+

[
Sσ − S·q

P ·q P
σ

]
g2(xB, Q

2)

}
. (29)

Let us focus for definiteness on the unpolarized cross section, which is obtained from

eq. (25) by averaging over the spins of the incoming lepton (sl) and of the nucleon (S),

and reads

d2σunp

dE ′ dΩ
=

1

2

∑

sl

1

2

∑

S

d2σ(sl, S)

dE ′ dΩ
=

α2
em

2MQ4

E ′

E
L(S)

µνW
µν (S) . (30)

Inserting Eqs. (17) and (23) into (30) one obtains the well-known expression

d2σunp

dE ′ dΩ
=

4α2
emE

′2

Q4

[
2W1 sin2 ϑ

2
+W2 cos2 ϑ

2

]
, (31)

Expressed in terms of F1 and F2, and as a function of x and y, the unpolarized cross

section is

d2σunp

dxB dy
=

4πα2
em

Q2xBy

{
xBy

2 F1(xB, Q
2) +

(
1 − y − γ2y2

4

)
F2(xB, Q

2)

}
, (32)

where

γ ≡ 2MxB

Q
(33)

is a order 1/Q quantity that will often appear in the DIS formulas.

8



3 The light–cone

The light-cone components of a four-vector aµ are defined as a± = (a0 ± a3)/
√

2, and

grouped in triplets of the form aµ = [a+, a−,a⊥], where the transverse bi-vector is

a⊥ = (a1, a2). The norm of aµ is given by a2 = 2a+a− − a2
⊥.

It is customary to define two light-like vectors n+ = [1, 0, 0⊥] and n− = [0, 1, 0⊥],

sometimes called “Sudakov vectors”, which identify the longitudinal direction and are

such that n+ · n− = 1. Any vector aµ can be written as

aµ = a+nµ
+ + a−nµ

− + aµ
⊥ , (34)

where aµ
⊥ = [0, 0,a⊥]. This is the four-dimensional generalization of the familiar de-

composition of a three-vector into longitudinal and transverse components with respect

to a given direction.

The metric tensor gµν
⊥ which projects onto the plane perpendicular to n+ and n− is

gµν
⊥ = gµν − (nµ

+n
ν
− + nν

+n
µ
−) . (35)

Another projector onto the transverse plane is

ǫµν
⊥ = ǫµνρσn+ρn−σ . (36)

The reference frame for DIS is chosen so that the nucleon’s momentum is purely

longitudinal:

P µ = P+nµ
+ +

M2

2P+
nµ
− ≃ P+nµ

+ , (37)

where the approximate equality means that we are neglecting the nucleon mass (a

legitimate approximation in the deep inelastic limit). Note that we are assuming, as

usual, that the nucleon moves in the +z direction, at variance with the conventions of

Ref. [39], where the nucleon is chosen to move in the −z direction.

The “infinite momentum frame” corresponds to P+ → ∞. Dominant contributions

to DIS are O(P+), whereas subleading corrections are suppressed by inverse powers of

P+.

For the analysis of DIS it is convenient to use a class of frames where both the

nucleon and the virtual photon have only longitudinal components (the “γ∗N collinear

frames”). The momentum of the photon is then parametrized as

qµ ≃ −xBP
+nµ

+ +
Q2

2xBP+
nµ
−. (38)

Light-cone variables are useful because DIS probes the parton dynamics on the

light-cone (see, e.g., Ref. [40]). To show this let us first rewrite the hadronic tensor as

W µν =
1

2π

∫
d4ξ eiq·ξ 〈P, S|[Jµ(ξ), Jν(0)]|P, S〉, (39)
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where, with respect to eq. (13), we subtracted a vanishing term.

Causality implies ξ2 ≥ 0, i.e. no space-like separations between the two currents

in the commutator. In the Bjorken limit one has q− = Mν/P+ → ∞, and large

oscillations in the exponential eiq·ξ = ei(q+ξ−+q−ξ+) make the integral in eq. (39) vanish

unless ξ+ → 0. Now, ξ2 ≥ 0 with ξ+ → 0 implies ξ2 = 0, that is a light-cone separation.

4 The parton model

Right after the first DIS experiments at SLAC, Feynman proposed the concept of parton

distributions as the probability densities of finding a parton with a certain momentum

fraction inside a nucleon [41]. In its original formulation, Feynman’s parton model

was based on the observation that the time scale of the interaction between the virtual

photon and the partons is ∼ 1/Q, hence much smaller than the time scale of the binding

interactions of partons, which is ∼ 1/M in the target rest frame and gets dilated in the

infinite-momentum frame. Thus, we can approximately assume that in DIS the lepton

interacts elastically with free partons, and define the parton distribution functions as

the single-particle longitudinal momentum distributions of the nucleon’s constituents.

The parton model can be constructed covariantly in quantum field theory, and we

will see that the parton distributions admit a rigorous definition in terms of correlation

functions of parton fields taken at two space-time points with a light-like separation

[42, 43] (for a modern treatment, see Ref. [44]).

Under the assumption that the virtual photon scatters incoherently off the internal

constituents of the nucleon, treated as free particles, the hadronic tensor W µν is repre-

sented by the handbag diagram shown in Fig. 2 and reads (to simplify the discussion,

for the moment being we shall consider quarks only)

W µν =
1

2π

∑

a

e2a
∑

X

∫
d3P X

(2π)3 2EX

∫
d4k

(2π)4

∫
d4κ

(2π)4
2π δ(κ2)

× [u(κ)γµφ(k, P, S)]∗ [u(κ)γνφ(k, P, S)]

×(2π)4 δ4(P − k − PX) (2π)4 δ4(k + q − κ) , (40)

where
∑

a is a sum over the quark flavors, ea is the quark charge, and we have intro-

duced the quark-nucleon vertex functions

φ(k, P, S) = 〈X|ψ(0)|P, S〉 . (41)

We define the quark-quark correlation matrix Φ(k, P, S) as

Φ(k, P, S) =
1

(2π)4

∑

X

∫
d3P X

(2π)3 2P 0
X

(2π)4 δ4(P − k − PX)φ(k, P, S)φ(k, P, S) , (42)
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Figure 2: The handbag diagram.

so that the hadronic tensor can be rewritten in the form (we neglect quark masses)

W µν =
∑

a

e2a

∫
d4k

∫
d4κ δ(κ2) δ4(k + q − κ) Tr [Φ γµ /κ γν ]

=
∑

a

e2a

∫
d4k δ((k + q)2) Tr [Φ γµ (/k + /q) γν] . (43)

Using the definition (41) and the completeness of the |X〉 states allows us to reexpress

the correlation matrix Φ in the more transparent form

Φij(k, P, S) =
1

(2π)4

∫
d4ξ eik·ξ 〈P, S|ψj(0)ψi(ξ)|P, S〉 . (44)

Once more we remind that the matrix elements in eq. (44) are connected.

The Sudakov decomposition of the quark momentum is1

kµ = xP+nµ
+ +

k2 + k2
⊥

2xP+
nµ
− + kµ

⊥ . (45)

In the parton model one assumes that the handbag diagram contribution to the

hadronic tensor is dominated by small values of k2 and k2
⊥. Thus we can approximately

write kµ as

kµ ≃ xP+nµ
+ ≃ xP µ . (46)

Notice that in the infinite momentum frame (P+ → ∞), kµ reduces automatically to

(46). That is why the infinite momentum frame is a convenient – but not mandatory

– frame for the parton model.

The on-shellness of the outgoing quark, in the light of eq. (46), implies

δ((k + q)2) ≃ δ(−Q2 + 2 xP · q) =
1

2P · q δ(x− xB) , (47)

that is

kµ ≃ xB P
µ . (48)

1From now on the modulus of a transverse two-vector a⊥ will be denoted as a⊥ ≡ |a⊥|.

11



Thus the Bjorken variable xB emerges as the fraction of the longitudinal proton mo-

mentum carried by the struck quark:

xB = x =
k+

P+
. (49)

Coming back to the hadronic tensor (43), the identity

γµγργν = gµρgνσ + gµσgνρ − gµνgρσ − iεµρνσ γσγ
5 , (50)

allows splitting W µν into a symmetric (S) and an antisymmetric (A) part under µ↔ ν

interchange. W
(S)
µν , which contributes to unpolarized DIS, is given by

W (S)
µν =

1

2(P · q)
∑

a

e2a

∫
d4k δ(xB − k+/P+)

× [(kµ + qµ) Tr (Φ γν) + (kν + qν) Tr (Φ γµ)

− gµν(k
ρ + qρ) Tr (Φ γρ)] . (51)

From eq. (38) and eq. (48) we get kµ + qµ ≃ (P · q)nµ
−/P

+, and eq. (51) becomes

W (S)
µν =

1

2P+

∑

a

e2a

∫
d4k δ(x− k+/P+)

× [n−µ Tr (Φγν) + n−ν Tr (Φγµ) − gµνn
ρ
− Tr (Φγρ)] . (52)

For later convenience we introduce the following notation. We call Φ[Γ], where Γ is a

Dirac matrix, the quantity

Φ[Γ](xB) ≡ 1

2P+

∫
d4k δ(xB − k+/P+) Tr (Γ Φ)

=
P+

2

∫
dξ−

2π
eixBP+ξ− 〈P, S|ψ(0) Γψ(0, ξ−, 0⊥)|P, S〉. (53)

Hence W
(S)
µν reads

W (S)
µν =

∑

a

e2a
[
n−µ Φ[γν ] + n−ν Φ[γµ] − gµν n

ρ
− Φ[γρ]

]
. (54)

We now have to parametrize Φ[γµ], which is a vector quantity. At leading twist, that is

considering contributions O(P+) in the infinite momentum frame, the only vector at

our disposal is P µ ≃ xBP
+nµ

+ (recall that kµ ≃ xBP
µ). Thus we can write

Φ[γµ](xB) =
1

2P+

∫
d4k δ(xB − k+/P+) Tr (γµ Φ) = f1(xB)nµ

+ (55)

where the coefficient of nµ
+, that we called f1(xB), is the number density of quarks, as

it will become clear later on. Multiplication of (55) by n−µ gives f1(xB) in the explicit

form

f1(xB) =

∫
dξ−

4π
eixBP+ξ− 〈P, S|ψ(0)γ+ψ(0, ξ−, 0⊥)|P, S〉 , (56)

12



where γ+ = (γ0 + γ3)/
√

2.

Inserting (55) in (54) yields

W (S)
µν =

∑

a

e2a (n−µn+ν + n−νn+µ − gµν) f1a(x) . (57)

The structure functions F1 and F2 can be extracted from W µν by means of two pro-

jectors (terms of order 1/Q2 are neglected)

F1 = Pµν
1 Wµν =

1

4

(
4x2

Q2
P µP ν − gµν

)
Wµν , (58)

F2 = Pµν
2 Wµν =

x

2

(
12x2

Q2
P µP ν − gµν

)
Wµν . (59)

Since (P µP ν/Q2)Wµν = O(M2/Q2) we find that F1 and F2 are proportional to each

other (the so-called Callan-Gross relation) and are given by

F2(xB) = 2xBF1(xB) = −xB

2
gµνWµν =

∑

a

e2a xB f1a(xB) , (60)

which is the well known parton model expression for the unpolarized structure func-

tions. This justifies the identification of (56) with the unpolarized quark distribution

function (i.e., the number density of quarks). To get the full expression of F1 and F2,

one should simply add to (59) the antiquark distributions f̄1(xB), which were left aside

in the above discussion. They read (the role of ψ and ψ is interchanged with respect

to the quark distributions)

f̄1(xB) =

∫
dξ−

4π
eixBP+ξ− 〈P, S|Tr [γ+ψ(0)ψ(0, ξ−, 0⊥)]|P, S〉 , (61)

and the structure functions F1, F2 are

F2(xB) = 2xBF1(xB) =
∑

a

e2a xB

[
f1a(xB) + f̄1a(xB)

]
. (62)

5 The quark correlation matrix

Quark distribution functions are contained in the correlation matrix Φ (Fig. 3), defined

as

Φij(k, P, S) =

∫
d4ξ

(2π)4
eik·ξ 〈P, S|ψ̄j(0)W[0, ξ]ψi(ξ)|P, S〉 . (63)

where |P, S〉 is the nucleon state of momentum P µ and polarization vector Sµ, i and

j are Dirac indices and a summation over colour is implicit. In QCD one has to

insert between the quark fields, taken at different spacetime points, a gauge link, or

Wilson line, W, which guarantees the gauge invariance of the correlator. This quantity
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i j

Φ

Figure 3: The quark correlation matrix Φ.

arises from multigluon final–state interactions between the struck quark and the target

spectators, which factorize to form a path-ordered exponential of the gluon field

W[0, ξ] = P exp

(
−ig

∫ ξ

0

dzµ A
µ(z)

)
, (64)

where Aµ ≡ Aµ
a ta (ta is the generator of colour SU(3) in the fundamental representa-

tion). The presence of this gauge link introduces in principle a path-dependence in Φ,

which in some cases turns out to be highly non trivial (Sec. 8).

Integrating Φ(k, P, S) over the quark momentum, with the condition x = k+/P+

that defines x as the fraction of the longitudinal momentum of the nucleon carried by

the quark, yields

Φ(x) =

∫
d4k Φ(k, P, S) δ(k+ − xP+)

=

∫
dξ−

2π
eixP+ξ− 〈P, S|ψ(0)W−[0, ξ]ψ(ξ)|P, S〉|ξ+=0,ξ⊥=0⊥

, (65)

where the Wilson line W−[0, ξ] connects (0, 0, 0⊥) to (0, ξ−, 0⊥) along the n− direction

and reads

W−[0, ξ] = P exp

(
−ig

∫ ξ−

0

dz−A+(0, z−, 0⊥)

)
. (66)

In the light-cone gauge, A+ = 0, the Wilson link reduces to unity and can be omitted.

The situation is more complicated in the case of transverse-momentum distributions,

which are defined in terms of field separations of the type (0, ξ−, ξ⊥): we shall return

to this issue in Sec. 8.

Φ(x) contains the collinear (i.e., k⊥-integrated) quark distribution functions. No-

tice that these distributions depend in general on x. It is only in the parton model,

neglecting order 1/Q2 corrections, that x coincides with the variable xB.

Introducing the longitudinal and transverse components of the the polarization

vector of the nucleon,

Sµ =
S‖

M

(
P+nµ

+ − M2

2P+
nµ
−

)
+ Sµ

⊥ ≃ S‖

M
P+nµ

+ + Sµ
⊥ , (67)
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where S2
‖ + S2

⊥ ≤ 1 (the equality sign applies to pure states), the expression of Φ(x) at

leading twist, that is at leading order in P+, is

Φ(x) =
1

2

{
f1(x) /n+ + S‖ g1(x) γ5/n+ + h1(x) γ5

[/S⊥, /n+]

2

}
. (68)

Here one sees the three leading-twist distribution functions: the number density f1(x),

already introduced, the helicity distribution g1(x) and the transversity distribution

h1(x), first identified by Ralston and Soper [8]. The quark distributions can be ex-

tracted from (68) by tracing Φ with some Dirac matrix Γ. We will use the notation

Φ[Γ](x) ≡ 1
2
Tr [Φ(x) Γ]. The explicit expressions of the leading-twist distributions are

(the transverse Dirac matrix γ⊥ is either γ1 or γ2):

f1(x) = Φ[γ+](x) =

∫
dξ−

4π
eixP+ξ−〈P, S|ψ̄(0)W−γ+ψ(ξ)|P, S〉|ξ+=0, ξ⊥=0⊥

, (69)

g1(x) = Φ[γ+γ5](x) =

∫
dξ−

4π
eixP+ξ−〈P, S|ψ̄(0)W−γ+γ5ψ(ξ)|P, S〉|ξ+=0, ξ⊥=0⊥

,(70)

h1(x) = Φ[γ+γ⊥γ5](x)

=

∫
dξ−

4π
eixP+ξ−〈P, S|ψ̄(0)W−γ+γ⊥γ5ψ(ξ)|P, S〉|ξ+=0, ξ⊥=0⊥

. (71)

In QCD the operators appearing in (69-71) are ultraviolet divergent, so they have to

be renormalised. This introduces a scale dependence into the distribution functions,

f1(x) → f1(x, µ), etc., which is governed by the renormalisation group equations, the

well known DGLAP equations [45, 46, 47].

If the quarks are perfectly collinear with the parent hadron, the three distribution

functions we have mentioned so far, f1(x), g1(x), h1(x), exhaust the information on

the internal dynamics of hadrons at leading twist, i.e., at zeroth order in 1/Q (for an

operational definition of twist, see Ref. [40]). If instead we admit a non negligible quark

transverse momentum, the number of distribution functions considerably increases. At

leading twist, there are eight of them. In order to understand their origin and meaning,

it is necessary to adopt a more systematic approach.

Notation In the Jaffe-Ji nomenclature of distribution functions [6], extended to

transverse momentum dependent distributions by Mulders and collaborators [20, 30],

f1(x), g1(x), h1(x) are the unpolarized (“number”), longitudinally polarized (“helic-

ity”) and transversely polarized (“transversity”) distribution functions, respectively,

with the subscript 1 denoting leading-twist quantities. The main disadvantage of this

nomenclature is the use of g1 to denote a distribution function whereas the same no-

tation is adopted for one of the two structure functions of polarized deep inelastic

scattering. We label the contribution of a specific flavor by a subscript or superscript

q, or a. Bars indicate antiquark distribution (and fragmentation) functions.
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Other common names in the literature are q(x), or fq(x), for the unpolarized dis-

tribution, ∆q(x), or ∆fq(x), for the helicity distribution, ∆T q(x), or ∆T fq(x), for the

transversity distribution (which is also called sometimes δq: I reserve this name to

the tensor charge, i.e., the first moment of hq
1 − h̄q

1). The Mulders et al. classification

scheme for the k⊥-dependent distributions [20, 30] is illustrated in detail in Sec. 8.

6 Probabilistic interpretation of distribution func-

tions

Distribution functions are essentially the probability densities for finding partons with

a given momentum fraction and a given polarization inside a hadron.

Focusing on quarks, f1(x) is the number density of quarks carrying a fraction x of

the longitudinal momentum of the nucleon, that is the probability of finding a quark

with a longitudinal momentum fraction x, irrespective of its polarization.

The helicity distribution function g1(x) is the helicity asymmetry of quarks in a

longitudinally polarized nucleon, that is, the number density q+(x) of quarks with

momentum fraction x and polarization parallel to that of the nucleon minus the number

density q−(x) of quarks with the same momentum fraction but antiparallel polarization:

g1(x) = q+(x)− q−(x). In terms of q± the unpolarized distribution f1(x) is simply the

sum of the two probability densities: f1(x) = q+(x) + q−(x).

The case of transverse polarization can be treated in a similar way: for a transversely

polarized nucleon the transversity distribution h1(x) is defined as the number density

of quarks with momentum fraction x and polarization parallel to that of the hadron,

minus the number density of quarks with the same momentum fraction and antiparallel

polarization, that is, denoting transverse polarizations by arrows, h1(x) = q↑(x)−q↓(x).
In a basis of transverse polarization states, h1(x) too has a probabilistic interpretation.

In the helicity basis, in contrast, it has no simple meaning, being related to an off-

diagonal quark-hadron amplitude.

We shall now see how the probabilistic interpretation comes about from the field-

theoretical definitions of quark (and antiquark) distribution functions presented above.

Let us first of all decompose the quark fields into “good” and “bad” components:

ψ = ψ(+) + ψ(−) , (72)

where

ψ(±) =
1

2
γ∓ γ± ψ . (73)

The usefulness of this procedure lies in the fact that “bad” components are not dynam-

ically independent: using the equations of motion, they can be eliminated in favour

of “good” components and terms containing quark masses and gluon fields. Since in

the P+ → ∞ limit ψ(+) dominates over ψ(−), the presence of “bad” components in a
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parton distribution function signals higher twists. Using the relations

ψ̄ γ+ ψ =
√

2ψ†
(+) ψ(+) , (74)

ψ̄ γ+γ5 ψ =
√

2ψ†
(+) γ5 ψ(+) , (75)

ψ̄ iσi+γ5 ψ =
√

2ψ†
(+) γ

iγ5 ψ(+) . (76)

the leading-twist distributions can be re-expressed as

f1(x) =

∫
dξ−

2
√

2π
eixP+ξ−〈P, S|ψ†

(+)(0)ψ(+)(0, ξ
−, 0⊥)|P, S〉 , (77)

g1(x) =

∫
dξ−

2
√

2π
eixP+ξ−〈P, S|ψ†

(+)(0)γ5ψ(+)(0, ξ
−, 0⊥)|P, S〉 , (78)

h1(x) =

∫
dξ−

2
√

2π
eixP+ξ−〈P, S|ψ†

(+)(0)γ⊥γ5ψ(+)(0, ξ
−, 0⊥)|P, S〉. (79)

Note that, as anticipated, only “good” components appear. It is the peculiar structure

of the quark-field bilinears in eqs. (77–79) that allows us to put the distributions in a

form that renders their probabilistic nature transparent.

A remark on the support of the distribution functions is now in order. In principle,

nothing in the definitions of the distribution functions constrains the ratio x ≡ k+/P+

to take on values between 0 and 1. The correct support of the distributions emerges,

along with their probabilistic content, if one inserts into (77–79) a complete set of

intermediate states {|n〉} [48] (see Fig. 4). Considering, for instance, the unpolarized

distribution we obtain from eq. (77)

f1(x) =
1√
2

∑

n

δ
(
(1 − x)P+ − P+

n

)
|〈P, S|ψ(+)(0)|n〉|2 , (80)

where
∑

n incorporates the integration over the phase space of the intermediate states.

Equation (80) clearly gives the probability of finding inside the nucleon a quark with

longitudinal momentum k+/P+, irrespective of its polarization. Since the states |n〉 are

physical we must have P+
n ≥ 0, that is En ≥ |P n|, and therefore x ≤ 1. Moreover, if we

exclude semi-connected diagrams like that in Fig. 4b, which correspond to x < 0, we

are left with the connected diagram of Fig. 4a and with the correct support 0 ≤ x ≤ 1.

A similar reasoning applies to antiquarks.

Let us turn now to the polarized distributions. Using the Pauli–Lubanski projectors

P± = 1
2
(1 ± γ5) (for helicity) and P↑↓ = 1

2
(1 ± γ1γ5) (for transverse polarization), we

obtain

g1(x) =
1√
2

∑

n

δ
(
(1 − x)P+ − P+

n

)

×
{∣∣〈P, S|P+ψ(+)(0)|n〉

∣∣2 −
∣∣〈P, S|P−ψ(+)(0)|n〉

∣∣2
}
, (81)
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|n〉

(a)

|n〉

(b)

Figure 4: (a) A connected matrix element with the insertion of a complete set of
intermediate states and (b) a semi-connected matrix element.

h1(x) =
1√
2

∑

n

δ
(
(1 − x)P+ − P+

n

)

×
{∣∣〈P, S|P↑ψ(+)(0)|n〉

∣∣2 −
∣∣〈P, S|P↓ψ(+)(0)|n〉

∣∣2
}
. (82)

These expressions exhibit the probabilistic content of the leading-twist polarizzed dis-

tributions g1(x) and h1(x): g1(x) is the number density of quarks with helicity + minus

the number density of quarks with helicity − (assuming the parent nucleon to have

helicity +); h1(x) is the number density of quarks with transverse polarization ↑ mi-

nus the number density of quarks with transverse polarization ↓ (assuming the parent

nucleon to have transverse polarization ↑). It is important to notice that h1 admits

an interpretation in terms of probability densities only in the transverse polarization

basis.

7 The transversity distribution

Let us focus on the “third” parton density, the transversity distribution h1, eq. (71). Its

main properties are: i) it is chirally-odd and therefore does not appear in the handbag

diagram of inclusive DIS, which cannot flip the chirality; in order to measure h1, the

chirality must be flipped twice, so one always needs two hadrons, both in the initial

state, or one in the initial state and one in the final state, and at least one of them

must be transversely polarized ; ii) there is no gluon transversity distribution: this

would imply a helicity-flip gluon-nucleon amplitude, which does not exist since gluons

have helicity ±1 and the nucleon cannot undergo an helicity change of two units.

The DGLAP equations for h1 have been worked out at leading order by Artru and

Mekhfi [4], and years later at next-to-leading order by various authors [49, 50, 51].

There are two noteworthy features of the evolution of h1: first of all, since there is

no gluon transversity distribution, h1 does not mix with gluons and evolves as a non-

singlet density [4]; second, at low x, h1 is suppressed by the evolution with respect to

g1 [52]. This has important consequences for those observables that involve h1 at low x

and large Q2, such as the Drell-Yan double transverse asymmetry at collider energies
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[53].

The transversity distribution satisfies a bound discovered by Soffer [54]:

|h1(x)| ≤
1

2
[f1(x) + g1(x)] . (83)

This inequality, which is derived in the context of the parton model from the expressions

of the distribution functions in terms of quark-nucleon forward amplitudes, is strictly

preserved in leading-order QCD [52, 55]. At next-to-leading order, parton densities are

not univoquely defined, but a regularization scheme can be chosen such that the Soffer

inequality is still valid [51].

The integral of Φ(x) over x gives the local matrix element 〈P, S|ψ̄(0)ψ(0)|P, S〉,
which can be parametrised in terms of the vector, axial and tensor charge of the

nucleon. In particular, the tensor charge (that we call δq, for the flavour q) is given by

the matrix element of the operator ψ̄iσµνγ5ψ,

〈P, S|ψ̄q(0)iσµνγ5ψq(0)|P, S〉 = 2 δq (SµP ν − SνP µ) , (84)

and is related to the transversity distributions as follows
∫ 1

0

dx [hq
1(x) − h̄q

1(x)] = δq . (85)

Note that, due to the charge-conjugation properties of ψ̄iσµνγ5ψ, which is a C-odd

operator, the tensor charge is the first moment of a flavour non-singlet combination

(quarks minus antiquarks).

It is now time to discuss the crucial distinction between transverse spin and trans-

verse polarization [5]. The transverse spin operator (i.e., the generator of rotations)

for a quark is Σ⊥ = γ5γ0γ⊥, and does not commute with the free quark Hamiltonian

H0 = αzpz. Thus, there are no common eigenstates of Σ⊥ and H0: said otherwise, in

a transversely polarized nucleon quarks cannot be in a definite transverse spin state

(the distribution related to Σ⊥, called gT (x), is a twist-three quantity that reflects

a complicated quark-gluon dynamics with no partonic interpretation). On the other

hand, the transversity distribution h1 carries information about the transverse polar-

ization of quarks inside a transversely polarized nucleon. The transverse polarization

operator is Π⊥ = 1
2
γ0Σ⊥, and commutes with H0, owing to the presence of an extra γ0.

Therefore, in a transversely polarized nucleon, quarks may exist in a definite transverse

polarization state, and a simple partonic picture applies to h1.

The argument above shows that the integral
∫

dx (hq
1 + h̄q

1) does not represent the

quark + antiquark contribution to the transverse spin of the nucleon. A transverse spin

sum rule containing the first moment of h1 + h̄1 has been derived in Ref. [56] within

the parton model, but, in the light of what we have just said and of other general

considerations, is quite controversial (see the discussion in Ref. [57]). A sum rule for

the total angular momentum of transversely polarized quarks in an unpolarized hadron

[58, 59], involving the generalized parton distributions, will be introduced in Sec. 14.

19



8 Transverse-momentum dependent distribution func-

tions (TMD’s)

In the quark momentum

kµ = xP+nµ
+ +

k2 + k2
⊥

2xP+
nµ
− + kµ

⊥, (86)

k+ = xP+ is the dominant component, whereas k⊥ and k− are suppressed by one and

two powers of 1/P+, respectively. Retaining the subleading transverse part, the quark

momentum can be written as

kµ ≃ xP µ + kµ
⊥ . (87)

We will see that at leading twist there are eight transverse-momentum distributions

(TMD’s): three of them, once integrated over k⊥, yield f1, g1, h1; the remaining five

are new and vanish upon k⊥ integration.

Integrating Φ(k, P, S) over k+ and k− only, one obtains the k⊥-dependent correla-

tion matrix

Φ(x,k⊥) =

∫
dk+

∫
dk− Φ(k, P, S) δ(k+ − xP+) , (88)

which contains the TMD’s. The field-theoretical expression of Φ(x,k⊥) [60] turns out

to be quite complicated due to the structure of the gauge link, which now connects two

space-time points with a transverse separation. One has [61, 62]

Φ(x,k⊥) =

∫
dξ−

2π

∫
d2ξ⊥

(2π)2
eixP+ξ− e−ik⊥·ξ⊥

×〈P, S|ψ̄(0)W−[0,∞]W⊥[0⊥,∞⊥]W⊥[∞⊥, ξ⊥]W−[∞, ξ]ψ(ξ)|P, S〉|ξ+=0,(89)

with two longitudinal Wilson lines directed along n−,

W−[0,∞] = P exp

(
−ig

∫ +∞

0

dz−A+(0, z−, 0⊥)

)
, (90)

W−[∞, ξ] = P exp

(
−ig

∫ ξ−

+∞

dz−A+(0, z−, ξ⊥)

)
, (91)

from (0, 0, 0⊥) to (0,∞, 0⊥) and from (0,∞, ξ⊥) to (0, ξ−, ξ⊥), and two Wilson lines

W⊥ at ξ− = ∞ containing the transverse gluon field Aµ
⊥ (Fig. 5).

WT [0⊥,∞⊥] = P exp

(
−ig

∫ ∞⊥

0⊥

dz⊥ · A⊥(0,∞, z⊥)

)
, (92)

WT [∞⊥, ξ⊥] = P exp

(
−ig

∫ ξ⊥

∞⊥

dz⊥ ·A⊥(0,∞, z⊥)

)
. (93)

This link structure, with the longitudinal Wilson lines W− running to ξ− = +∞,

applies to semi-inclusive deep inelastic scattering. In Drell-Yan processes, the Wilson
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Figure 5: The gauge-link structure of TMD distributions in SIDIS.

line runs to −∞ and this may change the sign of the distributions, as we will discuss

later (Sec. 9).

Note the presence in (89) of the transverse links, which survive in the light-cone

gauge A+ = 0, enforcing gauge invariance under residual gauge transformations. These

transverse lines are responsible for the final-state (or initial-state) interactions that

generate some TMD distributions otherwise forbidden by time-reversal invariance (the

so-called T -odd distributions, see below). In non singular gauges, on the contrary, the

gauge potential vanishes at infinity and one is left with the longitudinal links. It is

known that in this case there are light-cone logarithmic divergences arising in the limit

z+ → 0 [60] due to contributions of virtual gluons with zero plus momentum, i.e., with

infinitely negative rapidity. One way to avoid these singularities is to use Wilson lines

slightly displaced from the light-like direction. This introduces a dependence of the

TMD distributions on a new scalar quantity, ζ2 = (2P · v)2/v2 (v is a vector slightly

off the light-cone), acting as a rapidity cutoff. The light-cone divergences now appear

as large logarithms of ζ , which are resummed by the so-called Collins-Soper equation

[60, 63]. A lucid presentation of this subject is contained in Ref. [44]

Let us come back to the quark correlator. At leading twist, Φ(x,k⊥) has the

following structure [20, 30]

Φ(x,k⊥) =
1

2

{
f1 /n+ − f⊥

1T

ǫij⊥k⊥iS⊥j

M
/n+ +

(
S‖g1L +

k⊥ · S⊥

M
g1T

)
γ5/n+

+ h1T

[/S⊥, /n+]γ5

2
+

(
S‖h

⊥
1L +

k⊥ · S⊥

M
h⊥1T

)
[/k⊥, /n+]γ5

2M
+ ih⊥1

[/k⊥, /n+]

2M

}
, (94)

where ǫij⊥ is the two-dimensional antisymmetric Levi-Civita tensor, with ǫ12⊥ = 1. By
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tracing Φ(x,k⊥) with Dirac matrices, Φ[Γ] ≡ 1
2
Tr (ΓΦ), one gets

Φ[γ+] = f1(x, k
2
⊥) − ǫij⊥k⊥iS⊥j

M
f⊥

1T (x, k2
⊥) , (95)

Φ[γ+γ5] = S‖g1L(x, k2
⊥) +

k⊥ · S⊥

M
g1T (x, k2

⊥) , (96)

Φ[iσi+γ5] = Si
⊥h1(x, k

2
⊥) + S‖

ki
⊥

M
h⊥1L

−k
i
⊥k

j
⊥ + 1

2
k2
⊥g

ij
⊥

M2
STj h

⊥
1T (x, k2

⊥) − ǫij⊥k⊥j

M
h⊥1 (x, k2

⊥) , i = 1, 2 (97)

where h1 ≡ h1T +(k2
⊥/2M)h⊥1T . The three quantities Φ[γ+], Φ[γ+γ5] and Φ[iσi+γ5] represent

the probabilities of finding an unpolarized, a longitudinally polarized and a transversely

polarized quark, respectively, with momentum fraction x and transverse momentum

k⊥. In eqs. (95-97) we count eight independent TMD’s: f1, f
⊥
1T , g1, g1T , h1, h

⊥
1L, h

⊥
1T , h

⊥
1 .

Upon integration over k⊥, only three of these, f1(x, k
2
⊥), g1(x, k

2
⊥), h1(x, k

2
⊥), survive,

yielding the x-dependent leading-twist distributions f1(x), g1(x), h1(x).

A remark about the notation is in order. In the “Amsterdam classification” of

TMD’s [20], the letters f , g, h refer to unpolarized, longitudinally polarized, and

transversely polarized distributions, respectively (as first proposed by Jaffe and Ji

[5, 6]). The subscript 1 labels the leading twist. Subscripts L and T indicate that the

parent hadron is longitudinally or transversely polarized. A superscript ⊥ signals the

presence of ki
⊥ factors in the quark correlation function.

From eq. (97) we see that the spin asymmetry of transversely polarized quarks in-

side a transversely polarized nucleon is given not only by the unintegrated transversity

h1(x, k
2
⊥), but also by the TMD h⊥1T (x, k2

⊥), which has been given the name of “pret-

zelosity”, as it is somehow related to the non-sphericity of the nucleon shape [64] (for a

review of the properties of h⊥1T , see Ref. [65]). Both h1 and h⊥1T contribute to single-spin

asymmetries in SIDIS with a transversely polarized target, but with different angular

distributions, sin(φh + φS) the former, sin(3φh − φS) the latter, where φh and φS are

the azimuthal orientations of the final hadron momentum and of the nucleon spin vec-

tor, respectively. Note that, due to the intrinsic transverse motion, quarks can also be

transversely polarized in a longitudinally polarized nucleon (h⊥1L), and longitudinally

polarized in a transversely polarized nucleon (g1T ).

9 The T -odd couple: Sivers and Boer-Mulders dis-

tributions

Equation (95) shows that the probability of finding an unpolarized quark with lon-

gitudinal momentum fraction x and transverse momentum k⊥ inside a transversely

22



polarized nucleon (P̂ ≡ P /|P |) is

fq/N↑(x,k⊥) = f1(x, k
2
⊥) − (P̂ × k⊥) · S⊥

M
f⊥

1T (x, k2
⊥) , (98)

where P̂ ≡ P /|P |. From eq. (98) we can construct the azimuthal asymmetry

fq/N↑(x,k⊥) − fq/N↑(x,−k⊥) = −2
(P̂ × k⊥) · S⊥

M
f⊥

1T (x, k2
⊥) , (99)

which is proportional to f⊥
1T , called the Sivers function [16, 17]. A non vanishing f⊥

1T

signals that unpolarized quarks in a transversely polarized nucleon have a preferential

motion direction: in particular, f⊥
1T > 0 means that in a nucleon moving along +ẑ with

transverse polarization in the +ŷ direction, unpolarized quarks tend to move to the

right, i.e. towards −x̂.
Specularly, the distribution of transversely polarized quarks inside an unpolarized

nucleon is [66]

fq↑/N (x,k⊥) =
1

2

[
f1(x, k

2
⊥) − (P̂ × k⊥) · Sq⊥

M
h⊥1 (x, k2

⊥)

]
, (100)

and from this we get a spin asymmetry of the form

fq↑/N (x,k⊥) − fq↓/N(x,k⊥) = −(P̂ × k⊥) · Sq⊥

M
h⊥1 (x, k2

⊥) , (101)

which is proportional to h⊥1 , the Boer–Mulders distribution [30]. Positivity bounds for

f⊥
1T and h⊥1 were derived in Ref. [67]. Note that in the literature (see Ref. [2] and

bibliography therein) one also encounters the notation

∆Nfq/p↑ ≡ −2|k⊥|
M

f⊥q
1T , ∆Nfq↑/p ≡ −|k⊥|

M
h⊥q

1 . (102)

The Sivers and Boer-Mulders functions are associated with the time-reversal (T ) odd

correlations (P̂ ×k⊥)·S⊥ and (P̂ ×k⊥)·Sq⊥, hence the name of “T -odd distributions”.

To see the implications of time-reversal invariance, let us recall the operator definition

of these distributions, e.g., the Sivers function:

f⊥
1T (x, k2

⊥) ∼
∫

dξ−
∫

d2ξ⊥ eixP+ξ−−ik⊥·ξ⊥

×〈P, S⊥|ψ(0)γ+W[0, ξ]ψ(ξ)|P, S⊥〉|ξ+=0. (103)

If the overall Wilson link W is näıvely set to unity, the matrix element in (103) changes

sign under time reversal, and the Sivers function must therefore be zero [11]. On

the other hand, a direct calculation [27] in a spectator model shows that f⊥
1T is non

vanishing: gluon exchange between the struck quark and the target remnant generates
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a non-zero Sivers asymmetry (the presence of a quark transverse momentum smaller

than Q ensures that this asymmetry is proportional toM/k⊥, rather than to M/Q, and

therefore is a leading-twist observable). The puzzle is solved by carefully considering

the Wilson line in eq. (103) [29]. We have seen in fact that W includes transverse links

at infinity that do not reduce to unity in the light-cone gauge [62]. Since time reversal

changes a future-pointing Wilson line into a past-pointing Wilson line, T -invariance,

rather than constraining f⊥
1T to zero, gives a relation between processes that probe

Wilson lines pointing in opposite time directions. In particular, since in SIDIS the

Sivers asymmetry arises from the interaction between the spectator and the outgoing

quark, whereas in Drell-Yan production it arises from the interaction between the

spectator and an incoming quark, one gets

f⊥
1T (x, k2

⊥)SIDIS = −f⊥
1T (x, k2

⊥)DY . (104)

A similar relation holds for the Boer-Mulders function h⊥1 . Eq, (104) is an example

of the “time-reversal modified universality” of distribution functions in SIDIS, Drell-

Yan production and e+e− annihilation studied in Ref. [68] The relation (104) is a

direct consequence of the gauge structure of parton distribution functions, and its

experimental check would be extremely important.

Gauge link patterns of hadroproduction processes are more complicated and do

not result in a simple sign flip of TMD’s [69, 70, 71, 72]. An assumption often made

is that the transverse-momentum factorization holds with TMD’s containing process-

dependent Wilson lines (the so-called “generalized transverse-momentum factorization,

to be compared with standard transverse-momentum factorization, where TMD’s are

strictly universal quantities). Recent studies show that not only the standard factor-

ization, but also the generalized factorization, does not hold in hadroproduction of

back-to-back jets or hadrons [73].

10 Gluonic TMD’s

So far we have only discussed quark (and antiquark) distributions. Let us now consider

gluons. If the transverse momenta are integrated over, there are gluonic f1 and g1

distributions2, but not a gluonic h1, for the reason explained in Sec. 5 (at twist three,

on the other hand, there is a polarized gluon distribution in transversely polarized

hadrons, analogous to gT (x) [74]).

The panorama of transverse-momentum dependent gluon distributions is of course

much richer. It was explored by Mulders and Rodrigues [75] and can be summarised

as follows. There are eight gluon TMD’s: four of them, labelled by the letter G, are

diagonal in the gluon helicities and represent unpolarized or circularly polarized gluons;

2In the DIS context, they are usually called g(x), or G(x), and ∆g(x), or ∆G(x), respectively.
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the remaining four, labelled by the letter H , flip the gluon helicity, and describe linearly

polarized gluons in unpolarized or polarized hadrons.

One of these TMD’s, GT (x, k2
⊥), corresponds exactly to the Sivers function, that is,

represents the distribution of unpolarized gluons inside a transversely polarized hadron.

Thus, instead of GT (x, k2
⊥), it is more often denoted by f⊥g

1T (x, k2
⊥).

Two other noteworthy TMD gluon distributions are: H⊥(x, k2
⊥), the distribution

of linearly polarized gluons in an unpolarized hadron, somehow similar (but not ex-

actly equivalent) to the Boer-Mulders function; ∆H ′
T (x, k2

⊥), the distribution of lin-

early polarized gluons in a transversely polarized hadron, which plays a rôle similar to

transversity.

Polarized TMD gluon distributions are probed at leading order in hadroproduction

processes.

11 Constraints on the TMD’s

Non trivial positivity bounds for the TMD’s were derived in Ref. [67]. They read

k2
⊥

M2

[
(f⊥

1T )2 + (g1T )2
]
≤ (f1)

2 − (g1L)2 , (105)

k2
⊥

M2

[
(h⊥1 )2 + (h⊥1L)2

]
≤ (f1)

2 − (g1L)2 , (106)

|h⊥1T | ≤
1

2
(f1 − g1L) . (107)

Eliminating some TMD’s and relaxing the bounds, one gets the intuitive constraints

(remember that f⊥
1T , h⊥

1 and h⊥1T are asymmetries, that is differences of parton densities)

k⊥
M

|f⊥
1T | ≤ f1 ,

k⊥
M

|h⊥1 | ≤ f1 , |h⊥1T | ≤ f1 . (108)

A sum rule for the Sivers function was derived in QCD by Burkardt [76, 77], who

showed that the sum of all contributions to the average transverse momentum of un-

polarized partons in a transversely polarized target (that is, the average transverse

momentum induced by the Sivers effect), must vanish:
∑

a=q,q̄,g

〈ka
⊥〉|Sivers = 0 . (109)

In terms of the Sivers function, the condition (109) becomes [78]

∑

a=q,q̄,g

∫ 1

0

dx f
⊥(1) a
1T (x) = 0 , (110)

where we have introduced the first k2
⊥-moment of f⊥

1T ,

f
⊥(1)
1T (x) ≡

∫
d2k⊥

k2
⊥

2M2
f⊥

1T (x, k2
⊥) . (111)
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Although some QCD aspects, such as ultraviolet divergences and light-cone singulari-

ties, were not considered in the original derivation, the result (111) is likely to be valid

in general. In Ref. [79] it has been shown that the Burkardt sum rule is fulfilled for a

quark target in perturbative QCD at one-loop order.

From a phenomenological viewpoint, the importance of eq. (110) is that one can

infer the size of the gluon Sivers function from fits to SIDIS observables involving the

quark and antiquark Sivers functions [80, 81].

12 Higher-twist distributions

At twist three (suppressed by 1/Q, i.e., by 1/P+ in the infinite momentum frame, with

respect to leading twist), the quark correlator Φ(x) admits the general decomposition

[5, 6]

Φ(x)|twist 3 =
M

2P+

{
e(x) + gT (x)γ5/S⊥ + S‖ hL(x)

[/n+, /n−]γ5

2

}
, (112)

displaying the three distribution functions e(x), gT (x), hL(x). In particular, gT (x) con-

tributes to the polarized DIS structure function g2(x,Q
2) (see, e.g., Ref. [82]). Higher-

twist distributions do not have a probabilistic interpretation. They involve in fact both

good and bad components of the quark fields, so the procedure leading to expressions

such as eqs. (80-82) cannot be applied. We will see in Sec. 13 that higher-twist effects

reflect quark-gluon correlations.

The structure of the k⊥-dependent quark correlator Φ(x,k⊥) at twist three has

been studied by various authors [20, 30, 83, 84]. It is now known that there are 16

twist-three TMD’s (we use the nomenclature of [85]): e, e⊥T , eL, eT , fT , f⊥
L , f⊥

T , f⊥,

gT , g⊥L , g⊥T , gT , hL, hT , h, h⊥T . Among these, the T -odd functions are: e⊥T , eL, eT , fT ,

f⊥
L , f⊥

T , g⊥, h.

Four distributions, namely g⊥, e⊥T , fT , f
⊥
T , not identified in earlier studies, exist be-

cause the Wilson line in the quark correlator provides an extra independent vector (n−)

for the Lorentz decomposition of Φ(x,k⊥).

If we integrate Φ(x,k⊥) over k⊥, the only non vanishing distributions are the three

T -even functions in eq. (112). In fact, the TMD’s with a ⊥ superscript give zero due

to the presence of ki
⊥ factors, while the T -odd functions fT , eL, h vanish due to the

time-reversal invariance of QCD [11, 84].

Concerning twist four, the integrated parton distributions were first identified in

Refs. [5, 6, 86]. More recently, the complete description of the k⊥-dependent correlator

Φ(x,k⊥) has been presented by Goeke, Metz and Schlegel [84], who have shown that up

to twist four there are in total 32 TMD’s. The unintegrated correlation matrix Φ is also

composed of 32 Lorentz-scalar structures: 12 amplitudes associated to the four-vectors

k, P, S and 20 amplitudes associated to n−. The number of distribution functions being

equal to the number of amplitudes of Φ, all the TMD’s are independent and there are
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no general relations among them. In earlier studies [87, 20], some “Lorentz-invariance

relations” (LIR’s) were derived from an expansion of Φ that did not take into account

the amplitudes associated to the gauge link vector n−. Two of these relations are

gT (x) = g1(x) +
d

dx
g
⊥(1)
1T (x) , hL(x) = h1(x) −

d

dx
h
⊥(1)
1L (x) , (113)

where the transverse moments of g1T and h⊥1L are defined as in eq. (111). The presence

of the n−-dependent amplitudes invalidate the LIR’s, which are not valid in QCD

[88, 89]. However, they approximately hold as as far as quark-gluon interactions (and

quark mass terms) are neglected [90]. This is known as the “generalized Wandzura-

Wilczek (WW) approximation” [87, 20, 91, 90] and represents an extension of the

original WW approximation [92], which relates the polarized DIS structure functions

g1(x,Q
2) and g2(x,Q

2) [93, 82, 94].

A general remark about higher-twist distributions is in order. While the distribu-

tions e(x), gT (x), hL(x) – or, to be precise, the corresponding quark-gluon correlators

– enter into the collinear twist-three factorization theorem of QCD [33, 34], the k⊥-

dependent higher-twist distributions are employed in factorization formulas that lack

a solid QCD foundation. Thus, they should rather be interpreted as a way to model

subleading effects.

13 Quark-gluon correlations

Higher-twist effects in hard processes are determined by quark-gluon correlations inside

the hadrons [95, 96]. Referring to Fig. 6, we denote by k and k′ the momenta of the

outgoing and of the incoming quark, respectively, and by x = k+/P+ and x′ = k′+/P+

their longitudinal momentum ratios. The momentum of the gluon is kg = k′ − k, with

xg = x′ − x = k+
g /P

+. Let us introduce the quark-gluon correlation matrix Φµ
D(x, x′)

[6] containing the transverse covariant derivative Dµ
⊥ = ∂µ

⊥ − igAµ
⊥,

Φµ
D(x, x′) =

∫
dξ−

2π

∫
dη−

2π
eixP+ξ−ei(x′−x)P+η−

×〈P, S|ψ̄(0)W−[0, η] iDµ
⊥(η)W−[η, ξ]ψ(ξ)|P, S〉 , (114)

with ξ+ = η+ = 0 and ξ⊥ = η⊥ = 0. The general decomposition of Φµ
D is (ǫµν

⊥ ≡
ǫµνρσn+ρn−σ)

Φµ
D(x, x′) =

M

2P+

{
GD(x, x′)iǫµν

⊥ STν/n+ + G̃D(x, x′)Sµ
⊥γ5/n+

+ HD(x, x′)S‖γ5γ
µ
⊥/n+ + ED(x, x′)γµ

⊥/n+

}
, (115)

and displays the four twist-three quark-gluon correlation functions GD, G̃D, HD, ED.

Time-reversal invariance implies that they are real. By hermiticity, G̃D and HD are
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Figure 6: The quark–gluon correlation matrix.

symmetric, whereas GD and ED are antisymmetric under interchange of x and x′.

Integrating Φµ
D(x, x′) over x′, one gets a quark-gluon correlation matrix Φµ

D(x), where

one of the quark fields and the covariant derivative are evaluated at the same space-

time point. By means of the QCD equations of motion, this matrix can be related

to the quark correlation matrix Φ(x) at twist three, eq. (112), with the following

identifications

gT (x) =
1

x

∫
dx′ [GD(x, x′) + G̃D(x, x′)] , (116)

hL(x) =
2

x

∫
dx′HD(x, x′) , (117)

e(x) =
2

x

∫
dx′ ED(x, x′) . (118)

Here we have neglected quark mass (m) corrections, which would give additional con-

tributions of the type (m/M)h1, (m/M)g1, (m/M)f1, to gT , hL, e, respectively. From

eqs. (116-118) we see that the two-point functions GD, G̃D, HD, ED are more funda-

mental than the one-point functions gT , hL, e, introduced in Sec. 12.

One can introduce another set of quark-gluon correlation functions, related to the

D-type functions of eq. (115). They are contained in the correlation matrix Φµ
F (x, x′),

defined as Φµ
D with the covariant derivative iDµ

⊥ replaced by the gluon field strength

gF+µ. The decomposition of Φµ
F is

Φµ
F (x, x′) =

M

2

{
GF (x, x′)ǫνµ

⊥ S⊥ν/n+ + G̃F (x, x′)iSµ
⊥γ5/n+

+ HF (x, x′)iS‖γ5γ
µ
⊥/n+ + EF (x, x′)iγµ

⊥/n+

}
, (119)

The F -type correlators3 GF , G̃F , HF , EF are real and symmetric (GF and EF ) or

antisymmetric (G̃F and HF ) functions of their arguments.

It is this set of correlators that appear in the twist-three factorization formulas.

The F -type functions are not independent: it is possible to show in fact [99] that they

3In the literature [33, 35, 36, 97, 98], GF , G̃F , HF , EF are also called TF , T̃F , T̃
(σ)
F

, T
(σ)
F

, respec-
tively, but their normalisation varies from paper to paper.
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are related to the D-type functions as follows

GD(x, x′) = P
1

x− x′
GF (x, x′) , (120)

G̃D(x, x′) = P
1

x− x′
G̃F (x, x′) + δ(x− x′) g

(1)
1T (x) , (121)

ED(x, x′) = P
1

x− x′
EF (x, x′) , (122)

H̃D(x, x′) = P
1

x− x′
H̃F (x, x′) + δ(x− x′) h

⊥(1)
1L (x) , (123)

where P stands for the principal value and g
(1)
1T , h

⊥(1)
1L are the first transverse moments

of g1T and h⊥1L, defined as in eq. (111). If we integrate eqs. (120-123) over x′, we get

[20]

gT (x) =
g

(1)
1T (x)

x
+ g̃T (x) , hL(x) = −2

h
⊥(1)
1L (x)

x
+ h̃L(x) , e(x) = ẽ(x) . (124)

having denoted by a tilde some genuinely twist-three distributions related to the F -type

correlation functions.

Ignoring the contributions of tilde functions (and of quark mass terms) is what

we have called the generalized Wandzura-Wilczek (WW) approximation, which re-

lates twist-three distributions to twist-two distributions. This approximation has been

worked out by various authors [87, 20, 91, 90] and also applied in phenomenological

analyses [100].

In QCD the quark-gluon correlation functions acquire a dependence on a scale µ.

The equations governing the evolution in µ have been recently written down and solved

[101, 97].

14 Generalized parton distributions

The generalized parton distributions (GPD’s), which are related to non-forward quark-

quark (or gluon-gluon) correlators, emerge in the description of hard exclusive pro-

cesses, such as deeply-virtual Compton scattering and exclusive meson production,

characterized by a non-zero momentum transfer to the target nucleon [102, 103, 104,

105, 106, 107]. Here we will be mostly concerned with the relations existing between

the GPD’s and the transverse spin distributions (for more details, see Ref. [108]).

The kinematics of GPD’s is represented in fig. 7 (we follow the conventions of

[105]). The momenta of the incoming and the outgoing nucleon are p = P − 1
2
∆ and

p′ = P + 1
2
∆, respectively. The momentum transfer squared is t = ∆2. The GPD’s

depend on t and on two light-cone momentum ratios: x = k+/P+ and ξ = −∆+/2P+.

The variable ξ is sometimes called “skewness”, and the GPD’s are also known as

“skewed parton distributions”.
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Figure 7: Kinematics of GPD’s.

The quark GPD’s are defined through the correlator in the helicity basis

F [Γ](x, P,∆;λ, λ′) =

∫
dz−

4π
eixP+z− 〈p′, λ′|ψ̄(z1)ΓW−[z1, z2]ψ(z2)|p, λ〉 , (125)

where Γ is a Dirac matrix, W− a longitudinal Wilson line connecting z1 ≡ (0+,−1
2
z−, 0⊥)

to z2 ≡ (0+, 1
2
z−, 0⊥), and λ (λ′) is the helicity of the incoming (outgoing) nucleon. At

leading twist, there are 8 GPD’s [109]:

F [γ+] =
1

2P+
ū(p′, λ′)

(
γ+H(x, ξ, t) +

iσ+µ∆µ

2M
E(x, ξ, t)

)
u(p, λ) , (126)

F [γ+γ5] =
1

2P+
ū(p′, λ′)

(
γ+γ5 H̃(x, ξ, t) +

∆+γ5

2M
Ẽ(x, ξ, t)

)
u(p, λ) , (127)

F [iσj+γ5] = − iǫij⊥
2P+

ū(p′, λ′)

(
iσ+iHT (x, ξ, t) +

γ+∆i
⊥ − ∆+γi

⊥

2M
ET (x, ξ, t)

+
P+∆i

⊥ − ∆+P i
⊥

M2
H̃T (x, ξ, t) +

γ+P i
⊥ − P+γi

⊥

M
ẼT (x, ξ, t)

)
u(p, λ) . (128)

The first four, H(x, ξ, t), E(x, ξ, t), H̃(x, ξ, t), Ẽ(x, ξ, t), are chirally even and are related

to the familiar form factors. Integrating H , E, H̃, Ẽ over x, in fact, one gets the Dirac,

Pauli, axial and pseudoscalar form factors, respectively. The quantity
∫

dxEq(x, 0, 0) = κq , (129)

is the contribution of the flavour q to the anomalous magnetic moment of the nucleon,

that is, to the Pauli form factor F2 at t = 0. The GPD’s H, H̃,HT , taken at ξ = t = 0,

coincide with the integrated quark distributions f1, g1, h1:

H(x, 0, 0) = f1(x) , H̃(x, 0, 0) = g1(x) , HT (x, 0, 0) = h1(x) . (130)

The original interest in GPD’s was prompted by Ji’s sum rule relating the total

angular momentum of quarks (in a nucleon with polarization vector S) to the second

moment of H and E [103]:

〈J i
q〉 = Si

∫
dxx [H(x, 0, 0) + E(x, 0, 0)] . (131)
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Burkardt has derived a similar decomposition for the angular momentum of quarks

with transverse polarization vector Sq in an unpolarized nucleon [58, 59]:

〈J i
q(Sq)〉 =

Si
q

4

∫
dxx [HT (x, 0, 0) + 2H̃T (x, 0, 0) + ET (x, 0, 0)] . (132)

Here HT (x, 0, 0) coincides, as we have seen, with transversity, whereas the combination

2H̃T +ET appears in the impact-parameter description of the Boer-Mulders effect (see

Sec. 15).

Note in conclusion that there are no direct and model-independent connections

between the GPD’s and the TMD distributions, as stressed in Refs. [108, 110]. GPD’s

are instead directly related to the distribution functions in the impact-parameter space.

15 Distribution functions in the impact-parameter

space

In the impact-parameter space one can get a more intuitive picture of some transverse

spin and transverse momentum effects. To define the impact-parameter dependent

distributions (IPD’s), we first introduce nucleon states localized at a transverse position

R⊥, by means of an inverse Peierls-Yoccoz projection:

|P+,R⊥;S〉 = N
∫

d2P⊥

(2π)2
e−iP⊥·R⊥ |P, S〉 , (133)

where N is a normalization factor. The IPD’s are light-cone correlations in these

transverse-position nucleon eigenstates. For instance, the unpolarized IPD is given by

q(x, b2⊥) =

∫
dz−

4π
eixP+z− 〈P+, 0⊥;S|ψ̄(z1)W−[z1, z2]γ

+ψ(z2)|P+, 0⊥;S〉 , (134)

with z1,2 = (0+,∓1
2
z−, b⊥). This is the number density of quarks with momentum

fraction x and transverse position b⊥ inside an unpolarized hadron. The polarized

IPD’s are obtained by inserting in the matrix element of eq. (134), instead of γ+, the

matrices γ+γ5 and iσi+γ5.

IPD’s are Fourier transforms not of the TMD’s, but of the GPD’s. We define the

impact-parameter transform of a generic GPD X for ξ = 0 (which implies ∆2 = −∆2
⊥)

as

X (x, b2⊥) =

∫
d2∆⊥

(2π)2
e−i∆⊥·b⊥ X(x, 0,−∆2

⊥) . (135)

It is straightforward to show [111] that the unpolarized IPD q(x, b2⊥) coincides with the

Fourier transform of H(x, 0,−∆⊥), that is

q(x, b2⊥) = Hq(x, b
2
⊥) . (136)
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The impact-parameter density of unpolarized quarks in a transversely polarized nucleon

(N↑) is [111, 112, 108]

qN↑(x, b⊥) = Hq(x, b
2
⊥) +

(P̂ × b⊥) · S⊥

M
E ′

q(x, b
2
⊥) , (137)

with

E ′
q(x, b

2
⊥) ≡ ∂

∂b2⊥
Eq(x, b

2
⊥) , (138)

where E(x, b2⊥) is the Fourier transform of E(x, 0,−∆2
⊥). Notice the formal similarity

with eq. (98) and the correspondence f⊥
1T ↔ −E ′. . Due to the E ′

q term, which

can be regarded as the b⊥-space analogue of the Sivers distribution, qN↑(x, b⊥) is not

axially symmetric and describes a spatial distortion of the quark distribution in the

transverse plane. Final-state interactions can translate this position-space asymmetry

into a momentum-space asymmetry. For instance, if the nucleon moves (as usual) in the

+ẑ directions and is polarized in the +x̂ direction, a positive E ′
q implies that quarks tend

to be displaced in the −ŷ direction, and final-state interactions, which is expected to be

attractive on average, convert this transverse distortion into a momentum asymmetry

in the +ŷ direction. This is the intuitive explanation of the Sivers effect in the impact-

parameter picture [76, 113]. A measure of the space distortion is given by the flavour

dipole moment

di
q =

∫
dx

∫
d2b⊥ b

i
⊥ qN↑(x, b⊥) = −ǫ

ij
⊥S

j
⊥

2M

∫
dxEq(x, 0, 0) = −ǫ

ij
⊥S

j
⊥

2M
κq , (139)

where κq is the contribution of the quark flavour q to the anomalous magnetic moment

of the nucleon, see eq. (129. The argument developed so far is summarised by the

following qualitative relation between the Sivers function f⊥
1T and κq [114, 115, 113]

(any quantitative relation between these two quantities is necessarily model-dependent

[108, 110])

f⊥q
1T ∼ −κq , (140)

where the minus sign is a consequence of attractive final-state interactions that trans-

form a preferential direction in the b⊥-space into the opposite direction in k⊥. Eq. (140)

leads to an immediate prediction: since the quark contributions to the anomalous mag-

netic moment of the proton κp (extracted from the experimental value of κp using SU(2)

flavour simmetry) are κu ≃ 1.7, κd = −2.0, one expects f⊥u
1T < 0 and f⊥d

1T > 0. This

prediction has been corroborated by the SIDIS experiments.

Consider now the case of transversely polarized quarks inside an unpolarized nu-

cleon. Their impact-parameter distribution is [112]

q↑(x, b⊥) =
1

2

{
Hq(x, b

2
⊥) +

(P̂ × b⊥) · Sq⊥

M
[E ′

Tq(x, b
2
⊥) + 2H̃′

Tq(x, b
2
⊥)]

}
, (141)
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Figure 8: First x-moments of the densities of unpolarized quarks in a transversely
polarized nucleon (left) and transversely polarized quarks in an unpolarized nucleon
(right) for u (upper plots) and d (lower plots) quarks. Quark spins (inner arrows) and
nucleon spins (outer arrows) are oriented in the transverse plane as indicated. From
Ref. [116].

The term E ′
T +2H̃′

T is the analogue of the Boer-Mulders function in the b⊥-space – see

eq. (100). Again, we see that transverse spin (of quarks, in this case) causes a spatial

distortion of the distribution, which is at the origin of the Boer-Mulders effect. One can

repeat the same reasoning developed for the Sivers effect and introduce a transverse

anomalous moment κq
T , defined by

κq
T ≡

∫
dx [Eq

T (x, 0, 0) + 2H̃q
T (x, 0, 0)] . (142)

The Boer-Mulders function is expected to scale with this quantity,

h⊥q
1 ∼ −κq

T . (143)

where the minus sign has the same meaning as before. Unfortunately, no data exist

for κq
T . This quantity, however, and the impact-parameter distributions have been

calculated in lattice QCD [116, 117] (Fig. 8). The result for κT is: κu
T = 3.0, κd

T = 1.9.

Thus, at variance with f⊥
1T , we expect the u and d components of h⊥1 to have the same

sign, and in particular to be both negative. Moreover, assuming simple proportionality

between the ratio h⊥1 /f
⊥
1T and κ/κT , the u component of h⊥1 should be approximately

twice as large as the corresponding component of f⊥
1T , while h⊥d

1 and f⊥d
1T should have

a comparable magnitude and opposite sign. These predictions are well supported by a

phenomenological analysis of SIDIS data [118].
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16 Model calculations of TMD’s

Models and other non-perturbative approaches (e.g., lattice calculations) play a very

important rôle when the experimental information about distribution functions is scarce

or lacking at all. This is the case of the TMD’s, which are still essentially unknown. As

we said, even the existence of some of them (the T -odd distributions) was for longtime

quite uncertain. So, it is not surprising that a considerable effort has been made to

compute the TMD’s in various models of the nucleon and by lattice QCD. Here we will

be not be able to give an exhaustive account of all this work (still largely in progress),

and we will limit ourselves to a general discussion (for a recent review of model results

see Ref. [119]).

The first calculation of TMD’s was performed in a quark-diquark spectator model

[120]. This class of models, with various quark-diquark vertex functions, has been

subsequently used by many authors. In particular, Brodsky, Hwang and Schmidt [27]

used a simple scalar spectator model with gluon exchange to show explicitly that the

Sivers function is non vanishing. Since Wilson links, representing gluon insertions, are

crucial in order to guarantee the existence of the T -odd distribution functions, these can

only be computed in models containing gluonic degrees of freedom. Following Ref. [27],

more refined calculations of the Sivers and Boer-Mulders functions were performed in

spectator models with both scalar and axial-vector diquarks and various quark-diquark

vertices [121, 122, 123, 79, 124, 125, 126]. Other models used to evaluate the T -odd

functions include the MIT bag model [127, 128, 129, 130], the constituent quark model

[131, 130] and a light-cone model [132]. In Ref. [128] final state interactions were

assumed to be induced by instanton effects.

What emerges from models is that the Sivers function, although quite variable in

magnitude, is negative for u quarks and positive for d quarks (a different sign of f⊥d
1T

is however found in the model of Ref. [128]). As for the Boer-Mulders function, the

general prediction (with the exception of Ref. [123]) is that both the u and the d

distributions are negative. These signs for f⊥
1T and h⊥1 are also expected in the impact-

parameter picture [111, 114, 113, 115, 58], in the large-Nc approach (which predicts

the isoscalar component of f⊥
1T and the isovector component of h⊥1 to be suppressed)

[133] and in chiral models [134].

Spectator models have been also used [135, 136] to calculate T -odd twist-3 distri-

butions, in particular g⊥, which contributes to the longitudinal beam spin asymmetry

in SIDIS.

Models without gluonic degrees of freedom can be used to compute T -even TMD’s

only. These distributions have been calculated in a spectator model [125], in light-cone

quark models [137, 138, 139], in a covariant parton model with orbital motion [140]

and in the bag model [65, 141]. In particular, Ref. [141] presents a systematic study of

leading and subleading twist TMD’s and of the relations among them.

In any quark model without gluons, the Lorentz–invariance relations, obtained
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by neglecting the amplitudes of the quark-quark correlator related to the gauge link

(Sec. 12), must obviously be valid. There are also a number of other relations that

hold in some specific models. We just mention [65]

g1(x, k
2
⊥) − h1(x, k

2
⊥) =

k2
⊥

2M2
h⊥1T (x, k2

⊥) . (144)

According to this relation, h⊥1T can be interpreted as a measure of the relativistic effects

in the nucleon, which are known to be responsible for the difference between the helicity

and the transversity distributions [142]. Other model-dependent relations involving the

TMD’s are listed in Refs. [119, 141].

Finally, one should keep in mind that models provide a dynamical picture of the

nucleon at some fixed, very low, scale µ2 < 1 GeV2 [143, 144, 145, 146]. The quark

distributions that one gets are therefore valid at this unrealistic scale and must be

evolved to the experimental scales. The evolution of the TMD’s has been unknown until

very recently and is therefore neglected, or approximated, in current phenomenological

analyses.

17 Semi-inclusive deep inelastic scattering

Semi-inclusive deep inelastic scattering (SIDIS) is the process, ℓ(l) +N(P ) → ℓ′(l′) +

h(Ph) +X(PX), where ℓ (ℓ′) is the incoming (outgoing) lepton, N the nucleon target,

h the detected hadron, and the correponding momenta are given in parentheses. In

the following we will denote by Sµ the spin four-vector of the target and by λℓ the

longitudinal polarization of the incident lepton.

SIDIS is usually described in terms of the invariant variables

xB =
Q2

2P · q , y =
P · q
P · l , zh =

P · Ph

P · q , (145)

with q = l − l′ and Q2 ≡ −q2. In the deep inelastic limit, Q2 is much larger than the

hadronic masses (the mass M of the nucleon and the mass Mh of the final hadron).

Hereafter mass corrections will be neglected unless otherwise stated.

To parametrize the SIDIS cross section in terms of structure functions we adopt a

γ∗N collinear frame. In this class of frames the final hadron has a transverse momentum

P h⊥. The decomposition of the target spin vector is Sµ = Sµ
‖ + Sµ

⊥. All azimuthal

angles are referred to the lepton scattering plane: φh is the azimuthal angle of the

hadron h, φS is the azimuthal angle of the nucleon spin Sµ
⊥. The phase space of the

process contains another angle, ψ, which is the azimuthal angle of the outgoing lepton

around the beam axis with respect to an arbitrary fixed direction, which is chosen to

be given by the target spin. Up to corrections of order M2/Q2 one has dψ ≃ dφS [147].
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We consider the case of a spinless or unpolarized detected hadron. The SIDIS

differential cross section in the six variables xB, y, zh, φS, |P h⊥|, φh is given by

d6σ

dxBdydzhdφSdφhdP 2
h⊥

=
α2

em

8Q4

y

zh
LµνW

µν , (146)

where Lµν is the usual DIS leptonic tensor and W µν is the hadronic tensor

W µν =
1

(2π)4

∑

X

∫
d3P X

(2π)32EX

(2π)4δ4(P + q − PX − Ph)

×〈P, S|Jµ(0)|X;Ph, Sh〉〈X;Ph, Sh|Jν(0)|P, S〉 . (147)

The complete SIDIS cross section can be parametrized in terms of 18 structure func-

tions, in the following way (we neglect M2/Q2 corrections) [147, 85]

d6σ

dxBdydzhdφhdP 2
h⊥ dφS

=
α2

em

xByQ2

{
(1 − y +

1

2
y2)FUU,T + (1 − y)FUU,L

+(2 − y)
√

1 − y cosφhF
cos φh

UU + (1 − y) cos 2φh F
cos 2φh

UU + λℓ y
√

1 − y sinφh F
sin φh

LU

+S‖

[
(2 − y)

√
1 − y sinφh F

sin φh

UL + (1 − y) sin 2φh F
sin 2φh

UL

]

+S‖λℓ

[
y(1 − 1

2
y)FLL + y

√
1 − y cos φh F

cos φh

LL

]

+|S⊥|
[
sin(φh − φS)

(
(1 − y +

1

2
y2)F

sin(φh−φS)
UT,T + (1 − y)F

sin(φh−φS)
UT,L

)

+(1 − y) sin(φh + φS)F
sin(φh+φS)
UT + (1 − y) sin(3φh − φs)F

sin(3φh−φS)
UT

+ (2 − y)
√

1 − y sin φS F
sinφS

UT + (2 − y)
√

1 − y sin(2φh − φS)F
sin(2φh−φS)
UT

]

+|S⊥|λℓ

[
y(1 − 1

2
y) cos(φh − φS)F

cos(φh−φS)
LT + y

√
1 − y cosφS F

cos φS

LT

+ y
√

1 − y cos(2φh − φS)F
cos(2φh−φS)
LT

]}
. (148)

The structure functions depend on xB, y, zh,P
2
h⊥. Their first and second subscript

denote the polarization of the beam and of the target, respectively (U = unpolarized,

L = longitudinally polarized, T = transversely polarized), whereas the third subscript

refer to the polarization of the virtual photon.

If we integrate (148) over P h⊥, only five structure functions survive: FUU,T , FUU,L,

FLL, F cos φS

LT , F sinφS

UT . The first two, upon a further integration in z and a sum over

all outgoing hadrons, yield the unpolarized DIS structure functions FT (xB, Q
2) =

2xF1(xB, Q
2) and FL(xB, Q

2) = F2(xB, Q
2) − 2xBF1(xB, Q

2), the second two lead to

combinations of the structure functions g1(xB, Q
2) and g2(xB, Q

2) of longitudinally

polarized DIS, the fifth one vanishes. The fact that

∑

h

∫
dzh zh

∫
d2P h⊥ F

sinφS

UT = 0 (149)
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is a consequence of time-reversal invariance [147] and is another way to express the

Christ-Lee theorem [23], according to which there cannot be transverse spin asymme-

tries in inclusive DIS. The proof of this theorem is instructive and goes as follows [35].

The DIS cross section has the form

dσ ∼ LµνWµν(S⊥) , (150)

where the leptonic tensor Lµν is symmetric (the lepton is assumed to be unpolarized)

and the hadronic tensor is related to matrix elements of the electromagnetic current,

Wµν(S⊥) ∼ 〈P,S⊥|Jµ(ξ) Jν(0)|P,S⊥〉 . (151)

Applying parity, time-reversal and translational invariance, one gets

〈P,S⊥|Jµ(ξ) Jν(0)|P,S⊥〉 = 〈P,−S⊥|Jν(ξ) Jµ(0)|P,−S⊥〉 , (152)

and therefore

Wµν(S⊥) = Wνµ(−S⊥) . (153)

The spin asymmetry is

∆σ(S⊥) ∼ Lµν [Wµν(S⊥) −Wµν(−S⊥)] , (154)

that is, using (153)

∆σ(S⊥) ∼ Lµν [Wµν(S⊥) −Wνµ(S⊥)] = 0 (155)

due to the symmetry of Lµν .

This proof does not work in SIDIS. The reason is simply that the SIDIS hadronic

tensor (147) does not reduce to the simple form (151), due to the presence of the

detected particle, besides the unresolved X system, in the final state. Therefore, in

SIDIS no first principle forbids the existence of transverse spin asymmetries.

18 SIDIS in the extended parton model

In the current fragmentation region, which we are going to focus on, the virtual photon

strikes a quark (or an antiquark) that successively fragments into a hadron h. The

process is represented by the diagram in Fig. 9. We will take transverse momenta of

quarks into account and refer to this description as the “extended parton model”.

For the partonic description of SIDIS we work in a reference frame where the mo-

menta of the target nucleon and of the outgoing hadron are collinear and define the

longitudinal direction. In this class of “hN collinear frames”, one has P µ = P+nµ
+ and

P µ
h = P−nµ

−, whereas the virtual photon momentum acquires a transverse component

qT . The incoming quark momentum is kµ = xP µ +kµ
T , with x = k+/P+; the fragment-

ing quark momentum is κµ = P µ
h /z+ κµ

T , with z = P−
h /κ

−. Notice that the transverse
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Figure 9: Diagram contributing to SIDIS in the parton model.

quantities in the hN collinear frame (labelled by the subscript T ) differ from the trans-

verse quantities in the γ∗N collinear frame (labelled by the subscript ⊥) by terms

suppressed at least as 1/Q. In particular, qT is related to P h⊥ by qT = −P h⊥/zh, up

to 1/Q2 corrections.

Referring to Fig. 9 for the notation, the hadronic tensor is given by (for simplicity

we consider only the quark contribution)

W µν =
1

(2π)4

∑

a

e2a
∑

X

∫
d3P X

(2π)3 2EX

∑

X′

∫
d3P ′

X

(2π)3 2E ′
X

∫
d4k

(2π)4

∫
d4κ

(2π)4

× (2π)4 δ4(P − k − PX) (2π)4 δ4(k + q − κ) (2π)4δ4(κ− Ph − PX′)

×
[
χ̄(κ;Ph, Sh)γ

µφ(k;P, S)
]∗ [

χ̄(κ;Ph, Sh)γ
νφ(k;P, S)

]
, (156)

where φ(k;P, S) and χ(κ;Ph, Sh) are matrix elements of the quark field ψ, defined as

φ(k;P, S) = 〈X|ψ(0)|PS〉 , (157)

χ(κ;Ph, Sh) = 〈0|ψ(0)|PhSh, X〉 . (158)

We now introduce the quark–quark correlation matrices

Φij(k;P, S) =
1

(2π)4

∑

X′

∫
d3P ′

X

(2π)3 2E ′
X

(2π)4 δ4(P ′
X + k − P )φi(k;P, S) φ̄j(k;P, S)

=

∫
d4ξ eik·ξ 〈P, S|ψ̄j(0)ψi(ξ)|P, S〉, (159)

and

Ξij(κ;Ph, Sh) =
1

(2π)4

∑

X

∫
d3P X

(2π)3 2EX
(2π)4 δ4(Ph + PX − κ)

× χi(κ;Ph, Sh)χj(κ;Ph, Sh)

=
1

(2π)4

∑

X

∫
d3P X

(2π)3 2EX

∫
d4ξ eiκ·ξ

× 〈0|ψi(ξ)|Ph, Sh;X〉〈Ph, Sh;X|ψj(0)|0〉 , (160)
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Here Φ is the matrix already encountered in inclusive DIS, which incorporates the

quark distribution functions. Ξ is a new quark–quark correlation matrix (called frag-

mentation, or decay, matrix), which contains the fragmentation functions of quarks

into a hadron h. An average over colors is included in Ξ. Inserting eqs. (159, 160) into

eq. (156) yields

W µν =
∑

a

e2a

∫
d4k

∫
d4κ δ4(k + q − κ) Tr [Φ γµ Ξγν ] . (161)

It is an assumption of the parton model that k2, k·P , κ2 and κ·Ph are much smaller

than Q2. Stated differently, when these quantities become large, Φ and Ξ are strongly

suppressed. In a hN collinear frame, the photon momentum is

qµ ≃ −xBP
µ +

1

zh
P µ

h + qµ
T . (162)

The quark momenta are

kµ ≃ xP µ + kµ
T , (163)

κµ ≃ 1

z
P µ

h + κµ
T . (164)

If the fragmenting quark has a transverse momentum κT with respect to the final

hadron, the hadron has a transverse momentun pT = −zκT with respect to the quark.

The delta function in eq. (161) can be decomposed as

δ4(k + q − κ) = δ(k+ + q+ − κ+) δ(k− + q− − κ−) δ2(kT + qT − κT )

≃ δ(k+ − xBP
+) δ(κ− − P−

h /zh) δ
2(kT + qT − κT ) . (165)

which implies xB = x = k+/P+ and zh = z = P−
h /κ

−.

Exploiting the delta functions in the longitudinal momenta, the hadronic tensor

(161) then becomes

W µν = 2zh

∑

a

e2a

∫
d2kT

∫
d2κT δ

2(kT + qT − κT )

×Tr [Φ(xB ,kT ) γµ Ξ(zh,κT )γν ] , (166)

where Ξij(z,κT ) is the fragmentation analogue of Φij(x,kT ):

Ξij(z,κT ) =
1

2z

∫
dκ+ dκ− Ξ(κ) δ(κ− − P−

h /z)

=
1

2z

∑

X

∫
dξ+

2π

∫
d2ξT

(2π)3
eiP−

h
ξ+/z e−iκT ·ξT

×〈0|W[+∞, ξ]ψi(ξ)|Ph, Sh;X〉〈Ph, Sh;X|ψj(0)W[0,+∞]|0〉|ξ−=0. (167)

Each Wilson line (that we do not specify in detail: see, e.g., Ref. [85]) includes a

longitudinal link along n+ and a transverse link at infinity. In the case of fragmentation

one has the same gauge structure in SIDIS and in e+e− annihilation, which means that

there is no difference between the fragmentation functions of these processes (they are

universal quantities in a full sense) [68].
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19 Fragmentation functions

The integrated fragmentation correlator is given at leading twist by

Ξ(z) = z2

∫
d2κT Ξ(z,κT )

=
1

2

{
D1(z)/n− + SLG1(z)γ5/n− +H1(z)

[/ST , /n−]γ5

2

}
. (168)

D1, G1 and H1 are the integrated leading-twist fragmentation functions (FF’s): D1 is

the ordinary unpolarized fragmentation function, whereas H1 is the analogue of the

transversity distribution and describes the fragmentation of a transversely polarized

quark into a transversely polarized hadron.

To compute the azimuthal asymmetries we need the transverse-momentum depen-

dent FF’s. For simplicity, we limit ourselves to listing the FF’s of main phenomeno-

logical interest. The traces of the fragmentation matrix corresponding to unpolarized

and transversely polarized quarks are [20]

Ξ[γ−](z,κT ) = D1(z, κ
2
T ) +

ǫT ijκ
i
TS

j
hT

Mh

D⊥
1T (z, κ2

T ) , (169)

Ξ[iσi−γ5](z,κT ) = Si
hTH1(z, κ

2
T ) +

ǫijT pTj

Mh

H⊥
1 (z, κ2

T ) + . . . (170)

D1(z, κ
2
T ) and H1(z, κ

2
T ) are the κT -dependent unpolarized and transversely polarized

fragmentation functions, respectively, yielding D1(z) and H1(z) once integrated over

the transverse momentum according to eq. (168).

D⊥
1T is analogous to the Sivers distribution function and describes the production

of transversely polarized hadrons from unpolarized quarks (for this reason it is called

“polarizing fragmentation function” [148]).

The most noteworthy FF appearing in (170) isH⊥
1 (z, κ2

T ), the so-called Collins func-

tion, describing the fragmentation of a transversely polarized quark into an unpolarized

hadron [11]. The resulting transverse-momentum asymmetry of hadrons, expressed in

terms of the hadron transverse momentum pT with respect to the fragmenting quark,

is

Dh/q↑(z,pT ) −Dh/q↑(z,−pT ) = 2
(κ̂ × pT ) · S′

qT

zMh

H⊥
1 (z, p2

T ) , (171)

where S′
q is the spin vector of the fragmenting quark. From the structure of the correla-

tion (κ̂×pT )·S ′
qT one sees that a positive H⊥

1 corresponds to a preference of the hadron

to be emitted on the left side of the jet if the quark spin points upwards. Through this

mechanism the transverse momentum of the produced hadron with respect to the jet

direction acts as a quark polarimeter.

The Collins function satisfies a sum rule arising from the conservation of the intrin-

sic transverse momentum during quark fragmentation. This sum rule, discovered by
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Figure 10: The fragmentation process in the string model.

Schäfer and Teryaev [149], reads

∑

h

∫
dz z H

⊥(1)q
1 (z) = 0 , (172)

with

H
⊥(1)
1 (z) ≡ z2

∫
d2κT

κ2
T

2M2
h

H⊥
1 (z, κ2

T ) . (173)

A simple qualitative explanation of the Collins effect is provided by Artru’s string

model [10, 150]. Suppose that a quark q0, polarized in the +ŷ direction (i.e., out of the

page in Fig. 10), fragments into a pion with an antiquark q̄1 created by string breaking.

If we assume that the q1q̄1 pair is in a 3P0 state, the orbital angular momentum of the

pair is L = 1, and the pion, inheriting the transverse momentum of q̄1, moves in

the +x̂ direction. The quark q1, with the subleading pion that contains it, moves in

the opposite direction. This model predicts opposite Collins asymmetries for π+ and

π−, and a positive (negative) sign for the favored (unfavored) Collins function (where

“favored” refers to the fragmentation of a quark or an antiquark belonging to the

valence component of the final hadron, e.g. u→ π+, d→ π−, d̄→ π+, etc.).

The Collins function for pions has been computed in various fragmentation models

[151, 152, 153, 154, 155]. What is common to these approaches is that H⊥
1 arises from

the interference between a tree level amplitude and loop corrections that provide the

necessary imaginary parts. The differences reside in the pion-quark couplings and in

the nature of the virtual particles in the loops (pions or gluons). An assessment of

model calculations of the Collins function is contained in Ref. [156].

20 SIDIS structure functions

Inserting the expressions of Φ and Ξ into eq. (166) and contracting W µν with Lµν

leads to the SIDIS structure functions. With the following notation for the transverse
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momenta convolutions

C [wfD] =
∑

a

e2a xB

∫
d2kT

∫
d2κT δ

2(kT − κT − P h⊥/zh)

×w(kT ,κT ) fa(xB, k
2
T )Da(zh, κ

2
T ) , (174)

the non vanishing structure functions at leading twist are (ĥ ≡ P h⊥/|P h⊥|) [85]:

Unpolarized target

FUU,T = C [f1D1] , (175)

F cos 2φh

UU = C
[
−2(ĥ · kT )(ĥ · κT ) − kT · κT

MMh
h⊥1 H

⊥
1

]
. (176)

Longitudinally polarized target

F sin 2φh

UL = C
[
−2(ĥ · kT )(ĥ · κT ) − kT · κT

MMh

h⊥1LH
⊥
1

]
, (177)

FLL = C [g1LD1] . (178)

Transversely polarized target

F
sin(φh−φS)
UT,T = C

[
−ĥ · kT

M
f⊥

1TD1

]
, (179)

F
sin(φh+φS)
UT = C

[
−ĥ · κT

Mh
h1H

⊥
1

]
, (180)

F
sin(3φh−φS)
UT

= C
[

2(ĥ · κT )(kT · κT ) + k2
T (ĥ · κT ) − 4(ĥ · kT )2(ĥ · κT )

2M2Mh
h⊥1TH

⊥
1

]
,(181)

F
cos(φh−φS)
LT = C

[
ĥ · kT

M
g1TD1

]
. (182)

The structure function FUU,T gives the dominant contribution to the unpolarized cross

section integrated over φh, which reads

d4σ

dxBdydzhdP 2
h⊥

=
4πα2

em

xByQ2

∑

a

e2axB

(
1 − y +

1

2
y2

)

×
∫

d2kT

∫
d2κT δ2(kT − κT − P h⊥/z) f

a
1 (xB, k

2
T )Da

1(zh, κ
2
T ). (183)

Concerning the angular distributions, the sin(φh + φS) and sin(φh − φS) terms are

particularly important: the first is related to the Collins effect, the second to the Sivers

effect (both leading-twist mechanisms requiring a transversely polarized target). Notice
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that also in the unpolarized case there can be an azimuthal modulation, of the type

cos 2φh, due to the Boer-Mulders distribution h⊥1 .

Going to twist three, i.e. to order 1/Q, it turns out that the leading-twist struc-

ture functions (175-181) do not acquire any extra contribution, but there appear other

non vanishing structure functions. Among them, of particular phenomenological im-

portance are those related to the cosφh and sin φh modulations (the complete list

is in Ref. [85]). Ignoring, in the spirit of the parton model, interaction-dependent

terms, that is quark-gluon correlations, and quark mass contributions (the generalized

Wandzura–Wilczek approximation) one finds [85]

F cos φh

UU =
2M

Q
C
[
−(ĥ · κT ) k2

T

MhM2
h⊥1 H

⊥
1 − ĥ · kT

M
f1D1

]
, (184)

F sinφh

UL =
2M

Q
C
[
−(ĥ · κT ) k2

T

MhM2
h⊥1LH

⊥
1

]
. (185)

In the same approximation we get F sinφh

LU = 0. Thus a deviation of the beam-spin sin φh

asymmetry from zero might signal the relevance of interaction effects in the nucleon

(one should recall however that at high transverse momenta F sin φh

LU is non zero in next-

to-leading order QCD). The term in F cos φh

UU containing the product of the unpolarized

functions f1D1 is a purely kinematical contribution arising from the intrinsic transverse

motion of quarks, with no relation to spin. This contribution was discovered longtime

ago by Cahn [157, 158], and the existence of the corresponding azimuthal asymmetry

is referred to as the (cos φh) “Cahn effect”. A similar contribution emerges at twist

four, that is at order 1/Q2, in the cos 2φh term:

F cos 2φh

UU,Cahn =
M2

Q2
C
[

(2(ĥ · kT )2 − k2
T )

M2
f1D1

]
. (186)

21 The helicity approach

The parton-model results of the previous Sections have been obtained using the most

general decompositions of the correlation matrices Φ and Ξ, and inserting them into

the SIDIS hadronic tensor W µν . There is an alternative approach (the so-called “gen-

eralized parton model” approach), which relies on the helicity formalism and expresses

the cross section as a convolution of helicity amplitudes of elementary subprocesses

with partonic distribution and fragmentation functions, taking fully into account non

collinear kinematics [159]. In this picture, the basic factorization formula for the SIDIS

cross section is (we consider for simplicity an unpolarized lepton beam and a spinless
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or unpolarized final hadron)

d6σ

dxBdydzhd2P h⊥dφS
=

∑

qi

∑

λqi
λ′

qi

∫
d2k⊥

∫
d2p⊥ ρ

qi

λqi
λ′

qi

fqi
(x,k⊥)

×
(

dσ̂λqi
λ′

qi

dy

)
Dh/qf (z,pT ) δ2(zk⊥ − p⊥ − P h⊥) (187)

where the λ’s are helicity indices, fqi
(x,k⊥) is the probability of finding a quark qi with

momentum fraction x and transverse momentum k⊥ inside the target nucleon, ρq
λqi

λ′
qi

is the helicity density matrix of the quark qi, D
h/qf (z,p⊥) is the fragmentation function

of the struck quark qf into the hadron h (having transverse momentum p⊥ with respect

to the fragmenting quark) and dσ̂λqi
λ′

qi
∼ M̂λℓ′λqf

;λℓλqi
M̂∗

λℓ′λqf
;λℓλ′

qi

is the cross section

of lepton-quark scattering ℓqi → ℓ′qf at tree level. Note that, whereas in the collinear

case the produced hadron is constrained to have P h⊥ = 0 and the entire process takes

place in the scattering plane, the intrinsic transverse momentum of quarks introduces

a non planar geometry. The elementary scattering amplitudes M̂ ’s take into account

this non collinear and out-of-plane kinematics.

The quantity ρqi

λqi
λ′

qi

fqi
(x,k⊥) contains all the leading-twist TMD’s. Writing explic-

itly the helicity density matrix ρqi in terms of the components of the quark polarization

vector one can easily identify the eight TMD’s. Another method is to introduce the

helicity amplitudes F̂ for the process N → qi +X [160] and relate the helicity density

matrix of the quark to that of the parent nucleon as follows

ρqi

λqi
λ′

qi

fqi
(x,k⊥) =

∑

λN λ′
N

ρN
λN λ′

N

∑∫

X,λX

F̂λqi
,λX ;λN

(x,k⊥)F̂∗
λ′

qi
,λX ;λ′

N
(x,k⊥)

≡
∑

λN λ′
N

ρN
λN λ′

N
F̂

λqi
λ′

qi

λN λ′
N

(x,k⊥). (188)

The dependence of the amplitudes F̂ on k⊥ = |k⊥|eiφ (φ is the azimuthal angle in a

plane orthogonal to the quark momentum) is

F̂λqi
,λX ;λN

(x,k⊥) = Fλqi
,λX ;λN

(x, k2
⊥) exp(iλNφ) , (189)

so that

F̂
λqi

λ′
qi

λN λ′
N

(x,k⊥) = F
λqi

λ′
qi

λN λ′
N

(x, k2
⊥) exp[i(λN − λ′N)φ] . (190)

Due to rotational and parity invariance, only eight real and/or imaginary parts of the

functions F
λqi

λ′
qi

λN λ′
N

are independent and are related to the leading-twist TMD’s. The

explicit correspondence between the components of ρqi

λqi
λ′

qi

fqi
(x,k⊥), or the functions

F
λqi

λ′
qi

λN λ′
N

(x, k2
⊥), and the TMD’s defined in Sec. 8 can be found in Ref. [159].

In principle, generalized parton model formulas incorporate transverse motion ef-

fects at all orders in kT/Q. Neglecting O(k2
T/Q

2) contributions, the description be-

comes simpler, since in this case the longitudinal momentum fractions coincide with

the kinematic invariants: x = xB, z = zh.
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Despite their apparent dissimilarity, the two parton model approaches described so

far (the approach based on quark correlation matrices and eq. (166) and the generalized

parton model approach based on the helicity formalism) are perfectly equivalent, as far

as parton interactions are ignored. In other terms, all the leading-twist asymmetries

listed in eqs. (175-182) can be exactly reobtained from eq. (187) [161], whereas at

twist three the results of the two approaches are identical if one neglects the “tilde”

distribution and fragmentation functions arising from quark-gluon correlations.

22 QCD factorization schemes

So far, we have been working in the framework of the parton model. One may wonder

whether the results we have presented have any solid QCD foundation. The answer

to this question is positive, at least in a particular kinematic regime. Semi-inclusive

processes are characterized by two scales, besides the confinement scale ΛQCD: the

momentum transfer Q and the transverse momentum of the final hadron Ph⊥ (or,

equivalently, the transverse momentum of the virtual photon in the hN collinear frame,

QT ≡ |qT |).
Extending the pioneering work of Collins and Soper on back-to-back jet production

[60], Ji, Ma and Yuan [32, 31] (see also Ref. [162]) proved a TMD factorization theorem

for SIDIS and DY, valid in the low transverse-momentum region, Ph⊥(QT ) ≪ Q. In

this framework the unpolarized SIDIS structure function is written as

FUU,T (xB, zh, Q
2, Q2

T ) =
∑

a

e2a x

∫
d2kT

∫
d2κT

∫
d2lT δ

2(kT − κT + lT + qT )

×H(Q2) fa
1 (x, k2

T )Da
1(z, κ

2
T )U(l2T ) . (191)

For simplicity we have omitted the dependence of the distribution functions on ζ2 =

(2v · P )2/v2 and of the fragmentation function on ζ2
h = (2ṽ · P )2/ṽ2, where v and ṽ

are vectors off the light-cone. The variables ζ and ζh serve to regulate the light-cone

singularities, as explained in Sec. 8. H is a perturbative hard factor written as a series

in powers of αs. The soft factor U arises from the radiation of soft gluons (of transverse

momentum lT ) and is a matrix element of Wilson lines in the QCD vacuum. Also not

displayed in eq. (191) is the dependence of all quantities on the renormalization scale

µ and on the soft-gluon rapidity cut-off ρ =
√

(2v · ṽ)2/v2ṽ2. Of course, the physical

observable F does not depend on any of these regulators.

The generalization of eq. (191) to the polarized structure functions, in particular to

those generating transverse SSA’s, has been proposed in Refs. [163, 164]. The parton

model expressions of Sec. 18 are recovered at tree level, i.e. O(α0
s), since H(0) = 1 and

U (0)(lT ) = δ2(lT ).

At high transverse momenta, QT ≫ ΛQCD, SIDIS structure functions can be de-

scribed in collinear QCD. The azimuthal angular dependence of hadrons in leptopro-

duction was proposed longtime ago by Georgi and Politzer as a test of perturbative
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Figure 11: Feynman diagrams of the elementary processes contributing to SIDIS at
first order in αs.

QCD [165]. In collinear factorization, transverse momenta are generated by gluon

radiation. At first order in αs the hard elementary processes shown in Fig. 11 con-

tribute to the four unpolarized SIDIS structure functions FUU and to the two double-

longitudinal structure functions FLL. Introducing the partonic variables x̂ and ẑ, de-

fined as x̂ = Q2/2k · q = xB/x, ẑ = k · k′/k · q = zh/z, where k and k′ are the

four-momenta of the incident and fragmenting partons, respectively, and x and z are

the usual light-cone momentum fractions, i.e. k = xP and k′ = Ph/z, one has for the

FUU ’s at leading order in αs and leading twist [166, 167, 164]

FUU(x,Q2) =
αs

4π2 z2q2

∑

a

e2axB

∫ 1

xB

dx̂

x̂

∫ 1

zh

dẑ

ẑ
δ

(
Q2

T

Q2
− (1 − x̂)(1 − ẑ)

x̂ẑ

)

×
[
fa

1

(xB

x̂

)
Da

1

(zh

ẑ

)
Cγ∗q→qg

UU + fa
1

(xB

x̂

)
Dg

1

(zh

ẑ

)
Cγ∗q→gq

UU

+ f g
1

(xB

x̂

)
Da

1

(zh

ẑ

)
Cγ∗g→qq̄

UU

]
, (192)

and analogous formulas for the FLL’s. The Wilson coefficients C represent elementary

cross sections and are listed in Ref. [164].

The structure function F sinφh

LU encountered in Sec. 18, which produces a beam-

spin asymmetry and vanishes in the parton model, gets a non zero perturbative QCD

contribution at leading twist and order α2
s [168, 169].

On the contrary, the transversely polarized structure functions FUT , which vanish

at leading twist in collinear factorization, since there is no chirally-odd fragmentation

function, emerge at twist three, as the result of quark-gluon correlations. A twist-three

collinear factorization theorem valid at large transverse momenta was proven by Qiu

and Sterman [33, 34, 35], following early work by Efremov and Teryaev [170, 171, 172].

In this approach the cross section for SIDIS with a transversely polarized target has

the general form [163, 173, 174]

dσ ∼ GF (x, x′) ⊗ dσ̂ ⊗D1(z) + h1(x) ⊗ dσ̂′ ⊗ ÊF (z, z′) , (193)

where the first term contains a quark-gluon correlation function for the transversely

polarized nucleon and the ordinary unpolarized fragmentation function for the final
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hadron, whereas the second term combines the transversity distribution with a twist-

three fragmentation function. Let us focus on the first contribution (twist-three effects

in the initial state). The hadronic tensor can then be written as

Wµν(P, q, Ph) =
∑

a

∫
dz

z
wa

µν(P, q, Ph/z) zD
a
1(z) , (194)

where the partonic tensor wµν contributing to the transversely polarized structure

functions is (see Fig. 12)

wµν(P, q, Ph) =

∫
d4k

∫
d4k′ Tr [ΦA(k, k′)Hµν(k, k

′, q, Ph)] . (195)

In this expression ΦA is the quark-gluon correlator

ΦA(k, k′) =

∫
d4ξ

(2π)4

∫
d4η

(2π)4
eik·ξ ei(k′−k)·η

×〈P, S|ψ̄(0)W−[0, η] gA+(η)W−[η, ξ]ψ(ξ)|P, S〉 , (196)

and Hµν represents the perturbatively calculable partonic hard scattering. By means

of the collinear expansion [34] (we display the dependence on the quark momenta only)

H(k, k′) = H(x, x′) +
∂H

∂kα

∣∣∣∣
x,x′

(kα − xPα) +
∂H

∂k′α

∣∣∣∣
x,x′

(k′α − x′Pα) , (197)

one finally ends up with

wµν = i

∫
dx

∫
dx′ Tr

[
Φα

F (x, x′)
∂H(x, x′)

∂k′α

]
, (198)

where one recognizes the quark-gluon correlator Φα
F introduced in eq. (119). It is easy

to verify that, due to the structure of Φα
F , the hadronic tensor receives contributions

only from the imaginary part of the hard blob, arising from internal propagator poles.

Considering for definiteness the Sivers contribution to the cross section, its explicit

expression is [163, 173]

dσ|Siv ∼
∫

dx

x

∫
dz

z
δ

(
Q2

T

Q2
−
(

1 − x

xB

)(
1 − z

zh

))

×
∑

a

e2a

[
x

dGa
F (x, x)

dx
σ̂D +Ga

F (x, x) σ̂G +Ga
F (x, 0) σ̂F

+ Ga
F (x, xB) σ̂H

]
Da

1(z) + . . . (199)

The first two terms represent the so-called “soft-gluon pole” contribution (xg = x′−x =

0), the third term is the “soft-fermion pole” contribution (x′ = 0), the fourth term is
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Figure 12: General diagram contributing to SIDIS SSA’s in the twist-three factoriza-
tion.

the “hard pole” contribution (x′ = xB). The dots represent the contributions of G̃F

and of the gluonic correlation functions.

In the intermediate transverse-momentum region, i.e. ΛQCD ≪ Q2
T (P 2

h⊥) ≪ Q2,

one expects that both the TMD and the twist-three pictures should hold. This has

been explicitly verified in Refs. [36, 38]. The output of these important works is a set

of relations that connect the T -odd TMD’s (Sivers and Boer-Mulders functions) on one

side, with the quark-gluon correlations on the other side.
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