

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 15/07/2019

Esercizio n. 1

In un impianto industriale, un blocco di ferro di massa m_1 =30 kg viene trascina a velocita' costante v=2 m/s, lungo un tratto in salita lungo L=10 m inclinato di un angolo α =30° rispetto all'orizzontale. La fune di traino e' parallela alla salita e l'attrito dinamico tra blocco e pavimento vale μ_d =0.1

- a) Si ricavi il modulo, direzione e verso della tensione esercitata dalla fune (disegno delle forze)
- b) Si calcoli il lavoro dal sistema di traino durante tutto il tratto L
- c) Si ricavi la variazione di Energia Meccanica del blocco tra il punto di inizio e il punto di fine del tratto L. E' maggiore, minore o uguale al lavoro calcolato nel punto b)? giustificare la risposta Dopo il tratto L, il blocco m_1 viene fermato, poi scivola indietro lungo lo stesso tratto inclinato partendo da fermo. Si consideri trascurabile l'attrito in questa fase di discesa. A meta' del tratto L c'è un blocchetto di m_2 =3 kg fermo e tra i due corpi m_1 e m_2 avviene un urto totalmente elastico. d)calcolare la velocita' v_1 di m_1 immediatamente prima dell'urto e)calcolare la velocita' v_2 f di m_2 immediatamente dopo l'urto

(TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE, SCRIVERE IN BELLA CALLIGRAFIA, MOTIVARE SINTETICAMENTE L'USO DELLE FORMULE UTILIZZATE, INDICARE TUTTE I PASSAGGI ALEBRICI E I CALCOLI NUMERICI, con g=9.8m/s2)

Cognome e Nome	n. matricola			
Corso di Laurea	Firma			

Esercizio n. 2

In un impianto idraulico, all'interno di un condotto verticale di forma cilindrica scorre dell'acqua con una portata $q=1.4\ 10^3\ cm^3/sec$. Il condotto presenta una strozzatura: si passa da un diametro $d_1=10\ cm$ a $d_2=2.0cm$.

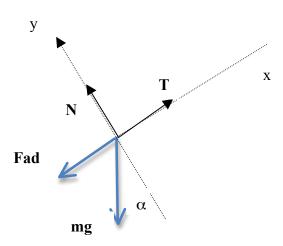
La pressione del liquido ad altezza H=150 cm sopra la strozzatura vale P_1 =6.20 10^6 dine/cm². Detarminare:

- a) velocita' dell'acqua v₁ in corrispondenza di della zona 1 dove c'e' P₁
- b) velocita' dell'acqua v₂ in corrispondenza della zona 2 dove c'e la strozzatura d₂
- c) pressione dell'acqua P₂ in corrispondenza della strozzatura d₂
- d) quanta massa d'acqua passa nel tubo, nell'unita' di tempo (si indichi con dm/dt tale quantita' e la si esprima in gr/s)

In corrispondenza della strozzatura si trova un bastoncino cilindrico in posizione verticale con asse del cilindro coincidente con asse della grondaia. Il bastoncino ha m=1gr, diametro d₃=1 cm e lunghezza H, ed e' posizionato sopra la strozzatura

e) calcolare modulo direzione e verso della forza totale agente sul bastoncino.

Si consideri l'acqua come un fluido ideale, ed il moto si consideri stazionario. Si assuma come densita' dell'acqua il valore rho=1 gr/cm³, usare g=9.8 m/s² Si ricorda che 1dine= 10⁻⁵ Newton


(TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE, tranne il punto e). SCRIVERE IN BELLA CALLIGRAFIA, MOTIVARE SINTETICAMENTE L'USO DELLE FORMULE UTILIZZATE, INDICARE TUTTE I PASSAGGI ALEBRICI E I CALCOLI NUMERICI)

Cognome e Nome	n. matricola		
Corso di Laurea	Firma		

Soluzioni (non sono riportati tutti i passaggi numerici per brevita', erano pero' richiesti nello svolgimento della prova di esame)

Esercizio 1

a)Siccome viaggia a velocita' costante, la risultante delle forze deve essere nulla, scomponendo lungo gli assi x,y indicati, dovra' essere:

Fad=mud N=mud mg cos α

 $T = mg sen \alpha + Fad$

 \rightarrow T= mg sen α + mud mg cos α =172 N

b) il lavoro svolto dal sistema di traino corrisponde al lavoro fatto dalla tensione Lavoro di $T = T L = 1.72 \ 10^3 \ J$

c) Delta Emecc= Emec_fine-Emecc_inizio= mg H = mg L sen alfa =1.5 10^3 J

Vale la relazione Delta Emecc = L_forze-non-cons = Lavoro di T + Lavoro di Fa < Lavoro di T, perche' l'attrito fa lavoro negativo

d) conservazione energia meccanica, perche' siamo in assenza di attrito $1/2 \text{ m1 v1}^2 = \text{mg h}$ con h=L/2 senalfa => v1=radq(2gh)=7 m/s

e) urto total	lmente el	lastico	con	m2 fei	mo
$v2_f = 2m1$	v1 / (m2	2+m1)	= 1	2.7 m/s	3

Cognome e Nome _____ n. matricola_____

Corso di Laurea_____ Firma____

Esercizio 2

a) +b) dalla definizione di portata : q= v S con S= sezione del tubo

$$v1=q/S1 = 18 \text{ cm/s} = 0.18 \text{ m/s}$$

$$S1 = pigreco d1^2 /4$$

$$v2=q/S2=445 \text{ cm/s}=4.45 \text{ m/s}$$

$$S2 = pigreco d2^2/4$$

c) applicando il teorema di Bernoulli, prendendo come quote h1=H e h2=0

P1= 6.2 10⁶ dine/cm2=6.2 10⁵ Pa

$$P2= P1+ \text{ rho g H} + \frac{1}{2} \text{ rho } (v1^2-v2^2) =6.25 \cdot 10^5 \text{ Pa}$$

d)
$$dm/dt = rho q = 1.4 10^3 gr/sec = 1.4 kg/sec$$

e) Fot=Fpeso+Fpressione dove Fpressione=F1+F2 (vettorialmente)

moduli F1=P1 S3 F2= P2 S3 con S3= pigreco d3^2 /4

essendo P2>P1 la risultante delle forze di pressione, **Fpressione**, e' diretta verso l'alto con modulo:

Fpressione= (P2-P1) S3 =0.38 N

Se prendo asse y verso il basso,

Ftoty= mg
$$-(P2-P1)$$
 S3 = 9.8 10-3 - 0.38 = -0.37 N

Ftot e' diretta verso l'alto

Cognome e Nome

n. matricola

Corso di Laurea

Firma____

PROVA SCRITTA VALIDA COME ORALE DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 07/01/2014

Domanda n.1

Si scriva la seconda equazione cardinale (polo fisso) per un sistema di punti materiali, spiegando cosa rappresentano i vari termini presenti nelle equazioni e le relative unita' di misura nel sistema internazionale

Che ruolo svolgono le forze interne del sistema ? Giustificare la risposta con dimostrazione. Quale legge di conservazione si puo' evincere da tale equazione ? giustificare la risposta Nel caso del sistema Sole-Pianeta questa legge di conservazione porta ad una delle leggi di Keplero, quale ?

Domanda n.2

Si scriva l'equazione di stato dei gas perfetti, spiegando ogni termine con relative unita' di misura nel sistema internazionale.

Si consideri ora l'espansione isoterma reversibile di n moli di un gas perfetto, e si calcoli il lavoro compiuto dal gas per passare da un volume inziale V1 ad un volume finale V2 (si effettui tutto il procedimento che porta alla formula finale)

Cosa significa trasformazione reversibile?

Si disegni l'espansione isoterma reversibile nel piano di Clapeyron, che curva e'?

Cognome e Nome	n. matricola
Corso di Laurea	Firma