

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 06/07/2015

Esercizio n. 1

Si supponga che la stazione spaziale orbitante (m=450 ton) descriva un moto circolare uniforme attorno alla Terra con altezza rispetto alla superficie terrestre pari a h=400 km e che nello spazio esista solo il sistema Terra- stazione spaziale.

- a)Si scriva la prima legge della dinamica per la stazione spaziale (assenza di attriti) esplicitando l'espressione della forza e della accelerazione.
- b)Calcolare il periodo di rivoluzione T della stazione spaziale
- c)Calcolare la velocita' con cui ruota la stazione spaziale
- d)Calcolare la energia meccanica posseduta dalla stazione spaziale
- e) Calcolare il lavoro (di una forza esterna) per portare la stazione spaziale dalla quota h ad una quota h'=2h

(si ricorda che g= GM_terra /R_terra^2, R_terra=6700 km)

(TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE)

Cognome e Nome	n. matricola
Corso di Laurea	Firma
PROVA SCRITTA DI FISICA LT	ING. ELETTR. INFORMATICA DEL 06/07/2015

Esercizio n. 2

Un gas perfetto monoatomico (n_moli=2) compie una trasformazione ciclica reversibile comprendente: espansione isoterma AB, trasformazione isocora BC ($P_C < P_B$), compressione isoterma CD, trasformazione isocora DA, dove $T_A = 900 \text{ K}$, $T_C = 1/3 \text{ T}_A$, $P_A = 2 \text{atm}$, $V_B = 2 \text{ V}_A$

- a) Si disegni il ciclo nel piano PV
- b) si calcoli il volume V_A
- c) si calcoli il lavoro totale scambiato durante il ciclo
- d) si calcoli il calore trasferito durante la trasformazione BC
- e) si calcoli la variazione di energia interna durante la trasformazione BC

(TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE)

Cognome e Nome	n. matricola
Corso di Laurea	Firma
	EVERTED DIFFERENCE DEL OCIONIDADO

Soluzioni

Esercizio 1

- a) G M terra m $/R^2 = m v^2 /R \implies GM terra/R = mv^2$
- b) terza legge di keplero applicata al sistema Terra-stazione spaziale, dove R=Rterra+h

$$T^2 = 4 \text{ pi}^2/\text{ (G M_terra)}$$
 $R^3 = 4 \text{ pi}^2/\text{g}$ Rterra $(1+\text{h/R_terra})^3$ (ricordo che g= G M_terra/R_terra 2) => $T=5661.6 \text{ sec}=1.573 \text{ ore}$

- c)v= omega R= 2pi / T (R terra+h) = 7.8 km/sec
- d) Em=Ec+Ep= $\frac{1}{2}$ mv² -GMterra m/R = -1/2 GM m/R = -1/2 g m R terra²/(Rterra+h)=-1.3 10¹³ J
- e)L=Delta E_meccanica= -1/2 G Mterra m / (Rterra+2h) (-1/2 G Mterra m / (Rterra+h)) = =1/2 G M_terra m h / [(Rterra+2h) (Rterra+h)]= =1/2 g m h Rterra^2 / [(Rterra+2h) (Rterra+h)]=8.8 10^11 J

Esercizio 2

- a) $VA = n R TA/PA = 2*8.314 J/K/mole *900 / (2*1.01 10^5 Pa)=0.074 m3$
- b) durante le isocore non c'e' lavoro, c'e' solo il lavoro durante le trasf. Isoterme:

 $Ltot= LAB+LCD= nR \ TAln(VB/VA)+nRTC \ ln(VD/VC) \qquad ma \ VC=VD \quad VD=VA \quad VB=2VA \\ Ltot=nRln(VB/VA) \ (TA-TC)=nR \ ln2 \ 2/3 \ TA=2 \ 8.314 \ ln2 \ 2/3 \ 900=6.9 \ kJ$

c)BC= isocora

$$Q=ncv(Tc-Tb)=ncv(Tc-Ta) = 2 3/2 R (-2/3TA)= -2R TA=-14.6 kJ (calore ceduto)$$

d) dal primo principio DU=Q-L, siccome BC e' isocora $\,$ L=0, quindi DU=Q=-14.6 kJ

Cognome e Nome	n. matricola	
Corso di Laurea	Firma	

PROVA SCRITTA VALIDA COME ORALE DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 06/07/2015

Domanda n.1

Si considerino due sistemi di riferimento (xyz) e (x' y' z') dove quest'ultimo si muove di moto traslatorio rispetto al primo.

Si ricavino le leggi di composizione di posizione, velocita' e accelerazione da utilizzare nel passare da un sistema di riferimento all'altro.

Si considerino ora due treni che si muovono entrambi con velocita' v=60km/h, uno contro l'altro. Un passeggero seduto su uno dei due treni con che velocita' vede muoversi l'altro treno?

Domanda n.2

Si scriva l'espressione della Spinta di Archimede, spiegando i vari termini e le relative unita' di misulta

Si dimostri come si ricava tale espressione.

Se immergo un blocchetto di ferro in acqua, galleggia o affonda? Giustificare la risposta

Cognome e Nome	n. matricola
Corso di Laurea	Firma
DDOWA SCRITTA DI EISICA I	TING ELETTE INCORMATICA DEL 06/07/2015