Codifica binaria dell'informazione

Numeri naturali

Rappresentazione in base p

- Metodo posizionale: ogni cifra ha un peso
 Esempio: 123 = 100 +20 +3
- Di solito noi usiamo la base decimale
- Un numero generico di m cifre è rappresentato quindi dalla sequenza: a_n , a_{n-1} , a_{n-2} ,..., a_0

```
a_n: cifra più significativa a_0: cifra meno significativa n = m-1 a_i \in \{0, 1, ..., p-1\}
```

Rappresentazione in base p

 Un numero naturale N, composto da m cifre, in base p, si esprime come:

$$N_p = a_n \cdot p^n + a_{n-1} \cdot p^{n-1} + \dots + a_1 \cdot p^1 + a_0 \cdot p^0 = \sum_{i=0}^n a_i \cdot p^i$$

- Esempio in base decimale (p=10): $587_{10} = 5 \cdot 10^2 + 8 \cdot 10^1 + 7 \cdot 10^0$
- Posso rappresentare i numeri nell'intervallo discreto:
 [0, p^m 1]

Rappresentazione in base due

- Base binaria: p=2; cifre a_i ∈ {0, 1} chiamate bit (binary digit)
- Otto bit sono chiamati byte
- Esempio, con m=5: $11011_2 = (1\cdot2^4+1\cdot2^3+0\cdot2^2+1\cdot2^1+1\cdot2^0)_{10} = 27_{10}$
- Posso rappresentare i numeri nell'intervallo discreto:
 [0, 2^m -1]
- Esempio con *m=8*: rappresento numeri binari: [00000000₂ , 111111111₂], ovvero: [0 , 255]

Conversioni di base

- Per convertire da base due a base 10:
 - Usare la sommatoria illustrata nel lucido precedente
- Per convertire da base dieci a base due:
 - Metodo delle divisioni successive

Somma

• Le cifre sono 0 e 1 ed il riporto può essere solo 1

Riporto precedente	Somma	Risultato	Riporto
0	0 + 0	0	0
0	0 + 1 1 + 0	1	0
0	1 + 1	0	1
1	0 + 0	1	0
1	0 + 1 1 + 0	0	1
1	1 + 1	1	1

Somma e carry

• Esempio:

```
1 ← riporto
             0101 +
                                 (5_{10})
                                 (9_{10})
             1001 =
                                 (14_{10})
             1110
           111 ← riporti
                                   (15_{10})
             11111 +
                                   (10_{10})
             1010 =
carry → 11001
                                    (25_{10} \text{ se uso 5 bit};
                                    9<sub>10</sub> se considero 4 bit: errato)
```

Basi ottale ed esadecimale

- Base ottale: p=8; $a_i \in \{0, 1, 2, 3, 4, 5, 6, 7\}$
 - Esempio: $234_8 = (2 \cdot 8^2 + 3 \cdot 8^1 + 4 \cdot 8^0)_{10} = 156_{10}$
- Base esadecimale: p=16;
 a_i ∈ {0, 1, 2, ..., 9, A, B, C, D, E, F}
 - Esempio: $B7F_{16} = (11 \cdot 16^2 + 7 \cdot 16^1 + 15 \cdot 16^0)_{10} = 2943_{10}$
 - Notare: "11" al posto di "B" e "15" al posto di "F", i loro equivalenti in base dieci

Numeri interi

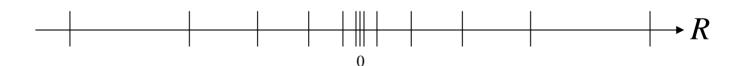
Modulo e segno

- Non posso memorizzare il "segno", uso una codifica
- Uso un bit per memorizzare il segno: "1" significa numero negativo, "0" numero positivo. Esempio m=3:

Num. intero, base 10	Num. intero, base due, modulo e segno
-3	111
-2	110
-1	101
-0	100
+0	000
+1	001
+2	010
+3	011

Numeri frazionari e reali

Parte frazionaria di un numero


- Rappresentiamo la parte frazionaria di un numero reale
- In base due, un numero frazionario N, composto da n cifre, si esprime come:

$$N_2 = a_{-1} \cdot 2^{-1} + a_{-2} \cdot 2^{-2} + \dots + a_{-n} \cdot 2^{-n} = \sum_{i=-n}^{-1} a_i \cdot 2^i$$

- Esempio con n=3: $0,101_2 = (1\cdot2^{-1}+0\cdot2^{-2}+1\cdot2^{-3})_{10} = 0,625_{10}$
- Date n cifre in base p=2, posso rappresentare numeri nell'intervallo continuo: [0, 1-2-n]
- L'errore di approssimazione sarà minore di 2⁻ⁿ

Virgola mobile (floating point)

- Il numero è espresso come: $r = m \cdot b^n$
 - m e n sono in base p
 - m: mantissa (numero frazionario con segno)
 - b: base della notazione esponenziale (numero naturale)
 - n: caratteristica (numero intero)
 - Esempio (p=10, b=10): -331,6875 = -0,3316875·10³ m = -0,3316875; n = 3
- Uso I₁ bit e I₂ bit per codificare m e n
- Precisione variabile lungo l'asse reale R:

Caratteri

Caratteri

- Codifica numerica
- ASCII (American Standard Code for Information Interchange) utilizza 7 bit (estesa a 8 bit)
- L'ASCII codifica:
 - I caratteri alfanumerici (lettere maiuscole e minuscole e numeri), compreso lo spazio
 - I simboli (punteggiatura, @, #, ...)
 - Alcuni caratteri di controllo che non rappresentano simboli visualizzabili (TAB, LINEFEED, RETURN, BELL, ecc)

Tabella ASCII (parziale)

DEC	CAR								
48	0	65	Α	75	K	97	а	107	k
49	1	66	В	76	L	98	b	108	I
50	2	67	С	77	M	99	С	109	m
51	3	68	D	78	N	100	d	110	n
52	4	69	Е	79	0	101	е	111	0
53	5	70	F	80	Р	102	f	112	р
54	6	71	G	81	Q	103	g	113	q
55	7	72	Н	82	R	104	h	114	r
56	8	73	I	83	S	105	į	115	S
57	9	74	J	84	Т	106	j	116	t
				85	U			117	u
				86	V			118	V
				87	W			119	W
				88	X			120	X
				89	Υ			121	У
				90	Z			122	Z

Algebra di Boole

Algebra di Boole

- E' basata su tre operatori: AND, OR, NOT
- Ogni formula può assumere solo due valori: "vero" o "falso". Idem per le variabili
- Rappresentiamo "vero" con "1" e "falso" con "0"
- AND e OR sono operatori binari
- NOT è un operatore unario

Operatori booleani

• Tavole di verità:

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Α	NOT A
0	1
1	0

Operatori booleani: proprietà

- Commutativa:
 - -AORB=BORA
 - -AANDB=ANDA
- Distributiva di uno verso l'altro:
 - A OR (B AND C) = (A OR B) AND (A OR C)
 - A AND (B OR C) = (A AND B) OR (A AND C)
- Leggi di De Morgan:
 - A AND B = NOT ((NOT A) OR (NOT B))
 - -AORB = NOT((NOTA)AND(NOTB))

Espressioni booleane

- Regole di precedenza:
 - NOT ha la massima precedenza
 - poi segue AND
 - infine OR
- Se voglio alterare queste precedenze devo usare le parentesi (a volte usate solo per maggior chiarezza)
- Per valutare un espressione booleana si usa la tabella della verità
- Due espressioni booleane sono uguali se e solo se le tabelle della verità sono identiche

Dalla formula alla tabella

Vediamo un esempio, per l'espressione:

D = A AND NOT (B OR C)

Α	В	С	D = A AND NOT (B OR C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0