Soluzioni dei problemi sui vettori

Vett. 1

b) a = 5.0 m, $\varphi_{acalc} = 0.64$ rad = 37°(con il pedice calc si indica il risultato della calcolatrice). b = 5.0 m, $\varphi_{bcalc} = 0.64$ rad = 37°, $\varphi_{b} = \pi + \varphi_{b calc} = 217^{\circ} \sim 220^{\circ}$, quindi $\varphi_{b} = 220^{\circ}$. c = 5.0 m, $\varphi_{ccalc} = -0.64$ rad = -37°, $\varphi_{c} = \pi - |\varphi_{c calc}| \sim 140^{\circ}$, quindi $\varphi_{c} = 140^{\circ}$. d = 5.0 m, $\varphi_{dcalc} = -0.64$ rad = -37°, $\varphi_{d} = 2\pi - |\varphi_{dcalc}| = 320^{\circ}$, quindi $\varphi_{d} = 320^{\circ}$.

Vett. 2

Per indicare i versori sarà sufficiente il carattere grassetto \mathbf{i} (o \mathbf{u}_x), \mathbf{j} (o \mathbf{u}_y), \mathbf{k} (o \mathbf{u}_z), \mathbf{u} (senza il simbolo ^). Tranne per i casi $\hat{\mathbf{S}} = \mathbf{S}/S$ (che ovviamente si può indicare anche con \mathbf{u}_s).

- a) $\mathbf{s} = -3.0 \,\mathbf{i} + -1.0 \,\mathbf{j}$ m, la differenza $\mathbf{d} -1.0 \,\mathbf{i} + 3.0 \,\mathbf{j}$ m.
- b) $s = \sqrt{s_x^2 + s_y^2} = \sqrt{10} \text{ m} = 3.2 \text{ m}$, $\varphi_s = 3.463 \text{ rad} = 198.41 ^\circ \sim 200^\circ$; d = 3.2 m $\varphi_d = 108^\circ \sim 110^\circ$. Verificare che **s** e **d** sono ortogonali, e trovare le condizioni percui il vettore somma è ortogonale al vettore differenza di due vettori dati.
- d) $\mathbf{s} = \rho_s \mathbf{u_p}$ dove $\rho_{s=} = s = 3.2$ m ed il versore $\mathbf{u_p}$ cambia direzione a seconda della posizione del punto P dato dalle cordinate polari $P(\rho, \varphi) = P_s(3.2 \text{ m}, 200^\circ)$, mentre per $\mathbf{d} = \rho_d \mathbf{u_d}$ avremo come coordinare $P_d(3.2 \text{ m}, 110^\circ)$. Il versore $\mathbf{u_p}$ vedremo che può essere espresso in funzione dei versori cartesiani e dell'angolo φ
- e) $\hat{\mathbf{s}} = \mathbf{u_s} = \mathbf{s}/s = -0.95 \,\mathbf{i} 0.32 \,\mathbf{j}$ e quindi $\mathbf{s} = 3.2 \,\mathbf{u_s}$ m, $\hat{\mathbf{d}} = \mathbf{u_d} = \mathbf{d}/d = -0.32 \,\mathbf{i} + 0.95 \,\mathbf{j}$ e quindi $\mathbf{d} = 3.2 \,\mathbf{u_d}$ m

Vett. 3

- a) Vettore somma $\mathbf{s} = 1.59 \,\mathbf{i} + 12.1 \,\mathbf{j} \,\mathbf{m}$. Le componenti: $s_x = 1.59 \,\mathbf{m}$, $s_y = 12.1 \,\mathbf{m}$. I componenti: $s_x = 1.59 \,\mathbf{i} \,\mathbf{m}$, $s_y = 1.21 \,\mathbf{j} \,\mathbf{m}$.
- b) s = 12.175 m = 12.2 m, direzione rispetto all'asse x $82.449^{\circ} = 82.5^{\circ}$
- c) $(\rho, \varphi) = (12.2 \text{ m}, 82.5^{\circ})$

Vett. 4

Suggerimento trovare la relazione tra θ (l'angolo tra \mathbf{a} e \mathbf{b}) e gli angoli α e β rispetto ad \mathbf{x} dei vettori dati e vedere come esprimere le componenti in funzioni di questi ultimi.

Vettori in 3 dimensioni

Vett. 6

b) $r_a = a = 4.1$, $\theta_a = 120^\circ$, $\phi_a = 150^\circ$, possiamo esprimere in coordinate sferiche $\mathbf{a} = r_a \mathbf{u_r}(P)$, dove $\mathbf{u_r}(P)$ è un versore che cambia direzione con la posizione del punto P e può essere espresso in funzione degli angoli θ (colatitudine) e ϕ (longitudine), possiamo fornire le coordinate del punto $P(r, \theta, \phi) \equiv P_a(4.1, 120^\circ, 150^\circ)$, facciamo notare che il vettore non aveva alcuna dimensione.

Per il vettore **b** si ha $\mathbf{b} = r \mathbf{u_r}(P)$ $b = \mathbf{u_r}(P)$ con le rispettive coordinate polari sferiche $P(r, \theta, \varphi) \equiv P_b(4.1, 61^\circ, 326^\circ)$

c) $\mathbf{a} = \rho_a \mathbf{u}_{\rho}(P_a) + z_a \mathbf{k}$ con le coordinate del punto $P(\rho, z, \varphi) \equiv P_a(3.6, -2.0, 150^{\circ})$, $\mathbf{b} = \rho_b \mathbf{u}_{\rho}(P_b) + z_b \mathbf{k}$ con le coordinate del punto $P(\rho, z, \varphi) \equiv P_a(3.6, 2.0, 326^{\circ})$.

Per le coordinate polari cilindriche il versore \mathbf{u}_{ρ} cilindrice può essere espresso in funzione dei versori \mathbf{i} , \mathbf{j} e l'angolo φ

Vett. 7

 $\mathbf{b} \wedge \mathbf{c}$ risulta pari a - 8.0 \mathbf{i} + 5.0 \mathbf{j} + 6.0 \mathbf{k} percui si ha:

- a) si calcolino $\mathbf{a} \cdot (\mathbf{b} \wedge \mathbf{c}) = -21.0$, $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = -9.0$, $\mathbf{a} \wedge (\mathbf{b} + \mathbf{c}) = 5.0$ i 11.0 j -9.0 k = g, si noti come in caso di somma o sottrazione si possano ottenere più cifre significative.
- b)
- c) Infatti g. a risulta pari a 0.
- d) Coordinate sferiche $P_g(15, 130^\circ, 114^\circ)$, coordinate cilindriche $P_g(11, -9.0, 114^\circ)$.