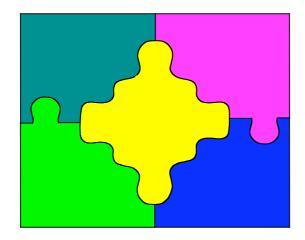
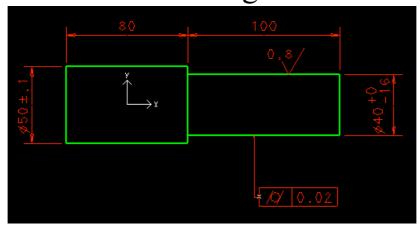
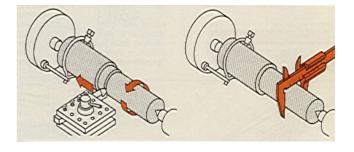
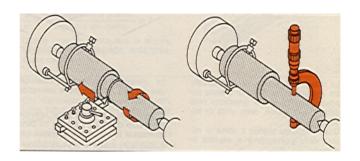


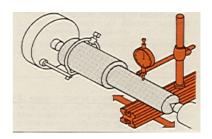
 La costruzione di un pezzo è una <u>successione</u> <u>ordinata di operazioni;</u>

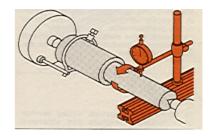

Il procedere della costruzione è verificato effettuando misure e controlli;

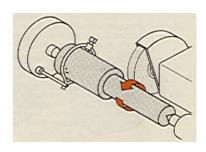

La scelta degli strumenti
di verifica dipende dalla
 <u>precisione di forma e</u>
 <u>dimensioni del pezzo</u> in
 funzione del suo impiego;

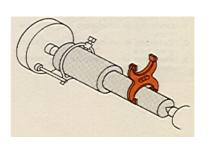

- Il <u>disegno</u> indica le <u>informazioni utili</u> alla costruzione del pezzo secondo le <u>specifiche previste dal progetto;</u>
- La <u>rappresentazione</u> col disegno, è <u>simbolica, essenziale ma completa;</u>


L'esempio di ciclo di lavoro che segue è ottenuto partendo dalle informazioni indicate sul disegno


Sgrossatura del pezzo:
 sgrossatura del cilindro
 grezzo; misura e
 controllo del diametro
 con <u>calibro a corsoio</u>;


• Finitura del pezzo: finitura del cilindro sgrossato; misura e controllo del diametro con *micrometro*;


• Controllo della cilindricità: scorrimento lungo la generatrice del pezzo con un *comparatore*;


• Controllo della circolarità: rotazione del pezzo con *comparatore* fisso;

• **Rettifica finale:** diametro al valore finale;

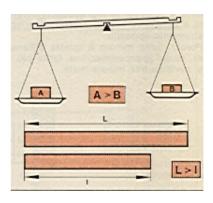
• Controllo della tolleranza: con un *calibro a forcella*

• M I S U R A
Confronto fra una grandezza
incognita ed una grandezza
nota (unità di misura) della
stessa specie;
gli strumenti forniscono la
misura secondo una data unità
di misura.

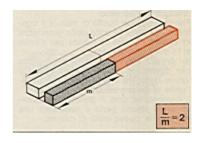
CONTROLLO

Serve per verificare la <u>corrispondenza geometrica e di</u> <u>forma</u> del pezzo in lavorazione rispetto al <u>modello o al disegno</u> <u>dato;</u>

il pezzo è confrontato con strumenti di controllo che possiedono le caratteristiche geometriche e di forma richieste.

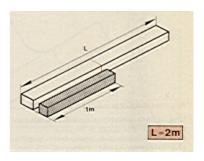


G R A N D E Z Z A
 Entità descrivibile in termini quantitativi e suscettibile di misurazione (velocità, peso, potenza, forza,etc);

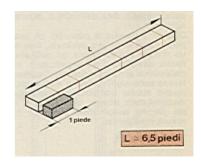

CLASSI DI GRANDEZZE

Due grandezze sono omogenee ed appartengono alla stessa classe quando sono confrontabili fra loro, permettono di stabilire se sono uguali o disuguali e di giudicare, se disuguali, quale sia la maggiore e quale la minore.

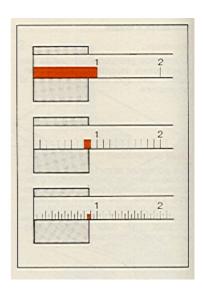
• MISURAZIONE DELLE G R A N D E Z Z E


Confronto fra una grandezza incognita ed una grandezza nota della stessa specie, denominata unità di misura

MISURA DI UNA GRANDEZZA

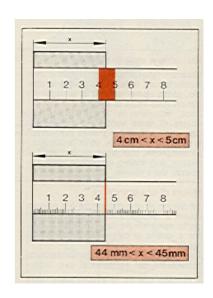

Numero intero o decimale che esprime il rapporto fra la grandezza incognita e la grandezza nota; una grandezza è quindi completamente individuata : dal numero che esprime il confronto fra la grandezza incognita e la grandezza nota; dall'unità di misura stabilita

per determinare quel numero



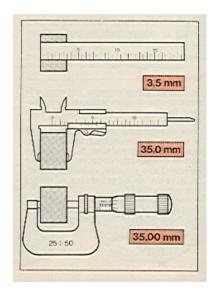
• UNITA' DI MISURA

Data una grandezza A, per effettuarne la misura considera il rapporto con una seconda grandezza B, omogenea con la prima, ottenendo valore un numerico C che esprime il valore della grandezza A riferita alla grandezza B; ponendo, per convenzione, il valore della grandezza B uguale a 1, essa prende il nome di unità di misura; la scelta dell'unità di misura è arbitraria e a seconda dell'unità prescelta varia il valore numerico delle grandezze considerate



APPROSSIMAZIONE misura reale di una grandezza non coincide mai con misura rilevata da uno strumento; *l'approssimazione* è la <u>differenza</u> fra la <u>misura</u> della reale grandezza misurata e la misura ricavata; per ridurre l'approssimazione, la grandezza unitaria viene suddivisa in un certo numero di parti uguali (sottomultipli) e si prende una di esse come nuova unità di misura

APPROSSIMAZIONE PER DIFETTO O PER ECCESSO

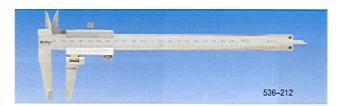

Se ad esempio la misura di una quota è <u>compresa fra 4 e 5 cm</u> come in figura, la misura di <u>4 cm</u> <u>approssima per difetto</u> a meno di 1 cm; la misura di <u>5 cm approssima per eccesso</u> a meno di 1cm (unità di misura)

• APPROSSIMAZIONE E CIFRE SIGNIFICATIVE

Una misura è definita da un numero e da una unità di misura; se il numero è intero tutte le cifre che lo compongono sono significative e l'approssimazione della misura dipende dall'unità di misura adottata;

se il numero ha anche una parte decimale, le cifre dopo la virgola indicano l'approssimazione della misura ed il più piccolo sottomultiplo dell'unità di misura

STRUMENTI DI MISURA E CONTROLLO


- Servono a misurare e a controllare dimensioni e grado di precisione raggiunto nella lavorazione di un pezzo, in relazione alle prescrizioni del disegno
- Sono diversi a seconda della grandezza da misurare, del tipo di misurazione o controllo da effettuare
- Possono essere classificati in:
 - strumenti misuratori
 - strumenti riportatori
 - strumenti di controllo fissi, calibri
 - strumenti comparatori-misuratori

STRUMENTI MISURATORI

- Tramite indicatori è
 possibile leggere i valore
 della grandezza misurata.
 Ad esempio sono strumenti
 misuratori:
 - riga metrica
 - calibro a corsoio
 - micrometro per esterni
 - goniometro

STRUMENTI RIPORTATORI

• Servono a riportare il valore di una grandezza dal pezzo ad uno strumento di misura ; sono usati quando non è possibile una misura diretta del pezzo.

STRUMENTI DI CONTROLLO FISSI, CALIBRI

 Sono strumenti campione coi quali vengono controllati per confronto
 i pezzi;
verificano se forma e dimensioni del pezzo rientrano nelle tolleranze stabilite dal disegno.

STRUMENTI COMPARATORI MISURATORI

• Servono ad eseguire controlli per confronto con pezzi campione e per verificare se forma e dimensioni di un pezzo rientrano nelle tolleranze stabilite dal disegno. Questi strumenti precisano il valore della differenza tra una quota campione e la quota in esame.

CARATTERISTICHE DEGLI STRUMENTI

PRECISIONE

E' la massima differenza tra il valore della misura fornita dallo strumento e il valore reale della grandezza misurata.

L'indicazione di precisione \pm 0,1 mm, significa che il valore della misura fornito dallo strumento non può discostarsi dal valore effettivo della grandezza oltre quell'intervallo

SENSIBILITA'

E' la variazione dell'indicatore di misura dello strumento, in rapporto alla variazione della grandezza da misurare.

A parità di variazione della grandezza da misurare, all'aumentare della sensibilità dello strumento aumenta la variazione dell'indicatore di misura

CARATTERISTICHE DEGLI STRUMENTI

PORTATA

E' il valore della massima grandezza che lo strumento può misurare.

Prima di eseguire una misura è necessario verificare che la portata dello strumento sia maggiore della grandezza da misurare.

CAMPO DI MISURA

E' la differenza fra la misura massima e la misura minima che lo strumento può rilevare.

APPROSSIMAZIONE

E' la più piccola frazione di una grandezza, che è possibile misurare con un dato strumento.

Per esempio una riga metrica suddivisa in millimetri, ha una approssimazione di 1 mm.

ERRORI DI MISURA

UNA MISURA E' CORRETTA E PUO' CONSIDERARSI ACCETTABILE, QUANDO E' NOTA L'ENTITA' DELL'ERRORE O DELL'INCERTEZZA DELLA MISURA STESSA

- ERRORI DOVUTI ALLO STRUMENTO

 <u>Dipendono da difetti di costruzione o dal logoramento:</u>

 <u>Si manifestano ogni volta che si impiega quel dato</u>

 <u>strumento</u>
- Errori di divisione : distanza fra le divisioni delle scale graduate;
- Errori dovuti alla scarsa fedeltà : discordanza dei valori ottenuti eseguendo più volte la stessa misura con lo stesso strumento;
- Errori dovuti all'usura : logorio delle superfici di misura o di parti fondamentali dello strumento;
- Errori dovuti a scarsa rigidezza: deformazioni dovute alla pressione di contatto tra lo strumento e il pezzo che influenzano il valore della lettura

ERRORI DI MISURA

ERRORI DOVUTI ALL'OPERATORE

<u>Dipendono dall'abilità che l'operatore impiega</u> <u>nell'eseguire l'operazione; tendono a diminuire con</u> <u>l'acquisto di esperienza e sensibilità</u>

- Errori dipendenti dalla mancata taratura o azzeramento dello strumento;
- Errori dovuti alla scelta dello strumento di misura;
- Errori di posizionamento e di manovra;
- Errori di parallasse

ERRORI DI MISURA

ERRORI DOVUTI ALL'AMBIENTE

<u>Dipendono dalla variazione delle condizioni ambientali; si possono ridurre controllando e mantenendo costanti le condizioni dell'ambiente.</u>

- Errori dovuti alla temperatura;
- Errori dovuti all'umidità;
- Errori dovuti all'illuminazione;
- Errori dovuti alla scarsa pulizia dello strumento e del pezzo;
- Errori dovuti alle vibrazioni