FT-IR Spectroscopy

An introduction in measurement techniques and interpretation
History

• Albert Abraham Michelson (1852-1931)
 – Devised Michelson Interferometer with Edward Morley in 1880 (Michelson-Morley experiment)
 – Detects the motion of the earth through the ether
 • There was no!
 • Death knell for the ether theory
 – No detector was available
 – Nonexistence of Fourier Transform algorithms capable of being performed by human calculators
• Rubens and Wood presented the first real interferogram in 1911
History

• 1950-1960 Air Force Cambridge Research Laboratories at John Hopkins University tested high resolution spectrometers for astronomical applications

• “Cooley and Tukey” algorithm allowed computing of Fourier transforms in 1965
 – The critical factorization step used by Cooley and Tukey had already been recognized and described by Gauss as early as 1805!
What is FT-IR?

- Fourier Transform InfraRed – Spectroscopy
- Advancement of dispersive spectrometers
- Interferometer
 - Beamsplitter
 → Interferogram
- After recording Fourier Transformation
 - Mathematical technique
Interferometer

• Michelson Interferometer
 – Beamsplitter splits up light
 • Reflected on moveable and fixed mirror
 • Interference after recombination
 • By smoothly translating the movable mirror, the optical path difference between the beams reflecting off the two mirrors is varied continuously which leads to a change of wavelength → Interferogram
Interferogram

- Sum of cosine signals of all frequencies
- Translation of the symmetric interferogram into a spectrum by Fourier Transformation:

\[S(\tilde{\nu}) = \int_{-\infty}^{\infty} I(x) \cos(2\pi \tilde{\nu} x) dx \]
Interferogram

- Experimental interferograms are asymmetric due to phase shifts
 - Complex FT required, including cosine and sine terms
Dispersive vs. FT-spectroscopy

• FT-devices have multiple advantages compared to dispersive devices:
 – **Multiplex-Advantage**: Capability of a complete wavelength scan at a time
 • Reduced background noise
 • Less scan time
 – **Throughput-Advantage**: Optical throughput is ten times higher
 – **Connes-Advantage**: Stable wavenumber because of internal reference (He-Ne-Laser)
Interpretation

- Typical absorbance positions:
 - “Lipids”
 - $=\text{CH}_2$: 3100-3000
 - $-\text{CH}_2-, -\text{CH}_3$: 3000-2850
 - Protein Amide I:
 - 1690-1600
 - Protein Amide II:
 - 1575-1480
 - Nucleic Acid:
 - $-\text{PO}_2$: 1225; 1084
Amide I & Amide II

- **Amide I:**
 - $-\text{C}=\text{O}$ \text{(stretch)}
 - prim. Amids
 - sec. Amids
 - tert. Amids

- **Amide II:**
 - $-\text{C}-\text{N}$ \text{(stretch)}; $-\text{C}-\text{N}-\text{H}$ \text{(deformation)}
 - prim. Amids
 - sec. Amids

- Secondary structure of proteins (α-Helix, β-sheet, random coil)
Amide I

- Here an example for varying secondary structure:
Sample Recording

• Solid samples are recorded with KBr pressed as a pellet
• Liquid samples are recorded with water as solvent
• Adjuvants have to be subtracted after recording to obtain the pure protein spectrum
• The spectrum is recorded with wavelength [cm⁻¹] on the abscissa and transmission [T%] or absorbance [A] on the ordinate
Interpretation
First steps

- Truncate the spectrum to the favored Amide region (Amide I: 1720-1580cm\(^{-1}\))
- Baseline correction
 - Fits a straight baseline to the non peak sections of a trace
Baseline correction
First steps

• Fourier Self-Deconvolution
 – High pass Fast Fourier Transform filter
 – Based on a method described by Griffiths and Pariente in 1986
 – Two filters
 • Exponential filter is used to sharpen spectral features
 – γ equals the FWHH of the widest resolvable peak
 • Smoothing filter
 – FSD tends to increase the noise in the data
 – Bessel filter is applied
Fourier Self Deconvolution
Qualitative Interpretation

• The 2nd derivative
 – Convolution technique described 1964 by Savitzky and Golay
 – Reveals the secondary structure of the protein sample
Quantitative Interpretation

• Quantitative interpretation is a quite difficult technique
• Operator dependent method
• Starting with the deconvoluted trace a peak fitting is performed
 – Algorithm is described by Marquardt and known as the Levenberg-Marquardt method in 1963
• There are multiple solutions for one trace
 – Even though the algorithm appears to have found a minimum, there may be a better solution for a given number of peaks and line shapes
 – Operator has to give more “information”
Example
“Same, same but different”
And then?

• The peak report contains
 – Number of peaks
 – Peak positions
 – Area of the peak (AUC)

• The sum of the AUCs represents the amount of secondary structure if related to the 2nd derivative peak positions