

JLab12, 12 Settembre 2012

Quantum phase-space distributions of quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

Leading Twist TMDs

CLAS12 has access to all of them through specific azimuthal modulations (ϕ , ϕ_s) of the cross-section thanks to the polarized beam and target

The CLAS12 Spectrometer

Luminosity up to 10^{35} cm⁻² s⁻¹

Highly polarized electron beam

H and D polarized targets

Broad kinematic range coverage (current to target fragmentation)

Required upgrades for nucleon-3D investigation:

HD-Ice: Transverse Target new concept (commission with CLAS at 6 GeV common to LOI 11-105)

RICH: Hadron ID for flavor separation (common to SIDIS approved exp.)

PAC30 report (2006): Measuring the kaon asymmetries is likely to be as important as pions The present capabilities of the present CLAS12 design are weak in this respect and should be strengthened.

Transversely Polarized HD-Ice Target

Attivita' Ferrara

Magnet Configuration @ CLAS12

- 0.5T transverse, < 5mT long. field (@ 2T)</p>
- Enhanced version of the existing NMR magnet system inside HD-ice cryostat
- > No impact on CLAS12 central detector
- Free forward acceptance (> 35°)
- Recoiling proton detection

Working point below critical current of existing SC wires

Quench protection and static forces are not critical

Attivita' Ferrara

Tracking Performances

JLab PAC 39, 18th June 2012, Newport News

7

CLAS12 Projections

Contalbrigo M.

JLab PAC 39, 18th June 2012, Newport News

HD-ice Upgrade

HD-ice Transverse Magent

parameter	Central detector	Saddle	Compensat.	Compensat.
	solenoid (ideal)	coil	solenoid	$\operatorname{Helmholtz}$
inner radius (mm)	471	35.8	37.4	38.4
outer radius (mm)	650	37.4	38.4	41.8
length (mm)	1225	100	100	15
current density (A/mm^2)		730	730	730

Towards the TDR:

- > Saddle internal to the solenoid
 - Low field region supports higher current
 - Magnetic forces better compensated
 - Issue for solenoid wiring
- Minimize material budget
- Field homogeneity vs compactness
- Quench protection

Magnets @ Ferrara

 A_n (B_n) normal (skew) 2n-pole field comp.

Test stand at 4 K

Test stand at 4 K

- Liquid Helium Cryostat
- Vacuum chamber in magnet bore
- 9 Hall probes
- Hollow shaft
- Automated measurement

CLAS Saddle Coil

Provides:

- Some transverse holding field for polarized HD;
- Transverse field for parallel

 \Leftrightarrow

anti-parallel rotation of the main solenoid field

Specifications:

- 750 Gauss field \rightarrow superconducting magnet.
- 10⁻² uniformity over target length (> 5cm)
- Minimum particle radiation losses \rightarrow 1 layer same small superconducting wire used

for the main solenoid

- Overlying the main solenoid

CLAS Saddle Coil

Design:

Final geometry : squares coils wrapped around the main solenoid

- $-\phi = 2.897'' = 7.358$ cm
- L = 15 cm
- N = 54 in one layer
- $I_{max} = 60 A \rightarrow By_{max} = 750 Gauss$ ($I_c > 65A$ at B=1 T)
- Uniformity over the target volume = $5 \ 10^{-2}$

Construction:

- Superconducting wire: SuperCon 54S43

54 Filaments $\phi = 50 \ \mu m$ Bare $\phi = 0.229 \ mm$ Insulated $\phi = 0.250 \ mm$ - Epoxy STYCAST 1265:soft gel, encapsulant, it cures in 4-6 days.

CLAS Saddle Coil

Construction

- Rotating support provided by the target group
 - Teflon shim constrains the coil shape
 - R&D: -teflon coated supports

-mesh applied to keep the square shape

Attivita' HD-ice

Sezioni coinvolte: Ferrara & Roma 2

	2012	2013	2014	2015	2016	2017
Progetto	Х	Х				
Studi preliminari di fattibilita' su banco		Х	Х			
Bobinatrice			Х	Х		
Procurement Materiali			Х	Х	Х	
Costruzione					Х	
Commissioning						Х
Budget	-	7	30	30	30	10