RICH 1

Contalbrigo M.

RICH 2

CLASMED: MIUR priority project

Installation at the end of 2021

In time for the start of demanding polarized target experiments

Component production in line with JLab schedule (only ~ 4 months delay due to COVID) Focus on spherical mirror

Part of 2021 funds can be anticipated to 2020

RICH 2: Mechanical Structure

Composite materials:

- aluminum + honeycomb / steel outside acceptance
- carbon fiber + honeycomb inside acceptance

RICH 2: Radiator & Sensors

Production well advanced and large fraction already at JLab

First 180 MAPMTs of the JLab orders already delivered, tests ongoing

The aerogel is stored in dry boxes and remotely monitored

Glass skin mirrros: surface planarity better than RICH 1

Task force appointed by JLab (Hall-B):

Туре	Temperature	Field strength	Uniformity	Magnet
HD-ice*	40 mK	~ 1 T		MgB ₂
Frozen spin NH ₃ /ND ₃ target*	0.1 K	~ 1 T		MgB ₂
Dynamically polarized NH ₃ /ND ₃ t	arget 0.3 K	~ 2.5 T	100 ppm	MgB ₂
High-field stand-alone NH ₃ /ND ₃ ta	arget 1 K	~ 5 T	100 ppm	

* Polarization sustainability under charged beam has to be demonstrated

Study of Moeller background containment with a target transverse holding field inside the 5T solenoid

800

700

600 500 400

300

200

100

vx (mm)

HD-ice Test Beam at UITF

UITF beam line under commissioning: reached the target energy of 9.5 MeV

Beam Monitor

Electron Beam Monitor:
upstream
downstream
Moeller scattering
upstream
e-

BC408

E: 20x10x38 mm coupled to 6x6 mm SensL SiPm

dE: 20x10x5 mm coupled to 3x3 mm SensL SiPm

In beam cryostat and beam monitor ready and awaiting first beam

Response to Sr⁹⁰

Ready for:

- rate asymmetry
- analog pulses
- trigger
- interlock

Contalbrigo M.

Target Holding Magnet

MgB₂ trapped magnetization as a function of the working temperature

New cool head and cryostat screens to improve the temperature control

CSN3, 10 September 2020

MgB₂ Superconductor

In preparation of double field test and CLAS12 application

New MgB₂ holder to allow

- filed map (6 Hall probes)
- fast sample exchange

MgB₂ characterization with SQUID magnetometer

Contalbrigo M.