RICH simulation for CLAS12

Contalbrigo Marco Luciano Pappalardo INFN Ferrara

RICH detector

The Aerogel option

Mean πk separation (5-8 GeV)

Mean πk separation (5-8 GeV)

Mean πk separation (5-8 GeV)

ID efficiency (5-8 GeV)

Mean p.e. number (5-8 GeV)

Gamma hits with Aerogel

Mean πk separation (5-8 GeV)

ID efficiency (5-8 GeV)

Mean p.e. number (5-8 GeV)

Enhancement of tracks with low momentum (P < 2 GeV)

Simulating the torus effect by grepping info from CLAS12 Technical Design Report

• Center of torus field obtained from linear interpolation of data in fig. 1.1 (pag 110)

• Integrated field from exponential interpolation of data in tab 1.1 (pag 113)

Conductor	NbTi
Configuration, overall dimensions	Six trapezoidal sections
Radial thickness	294 mm
No. of double pancakes in section	1
No. of turns in double pancake	$2 \times 140 = 280$
Conductor length (one section)	2.43 km
Conductor length (torus)	$14.56~\mathrm{km}$
Torus inductance	3.12 H
Conductor current	3150 A
Amp-turns (one section)	0.882 mA
Amp-turns (torus)	$5.3 \mathrm{mA}$
Stored energy (torus)	15.5 MJ
Max. field (at the winding)	4.6 T
$\int Bdl \ (\theta = 40^{\circ})$	$0.517~\mathrm{Tm}$
$\int Bdl \ (\theta=5^{\circ})$	3.32 Tm
$\int Bdl \ (\theta=20^{\circ})$	$1.43~\mathrm{Tm}$

Table 1.1: Parameters of the torus reference winding.

 θ = w.r.t. direction normal to RICH

R = radial distance from beam

 θ = w.r.t. direction normal to RICH

First results for the "standard" configuration:

- pi/K separation barely affected by the toroid
- pi/K separation weakly dependent on hadron charge

Conclusions (1st part)

Aerogel provides a very good pion/kaon separation up to 8 GeV/c

• Performances were found to improve for:

- small photo-detector pads (~ 0.3 cm)
- small radiator thickness (~ 3 cm)
- relatively small refraction index (~ 1.03)
- minimum radius down to 50 cm from beam pipe
- all sectors covered
- Similar pion/kaons separation w/wo toroid and weak sensitivity to particle charge

• Main problems:

- 1. Interference with TOF detector
- 2. High costs due to small pad size & large photo-detector area

Need to minimize detector area & material budget

The idea: simulate the material budget of the photon-detector with a dummy material wall placed at the end of the GAP

Main features:

- material: alluminum, copper or tungsten (to test various densities)
- pattern: 8x8 matrix of 0.6 cm squared cells surrounded by

2 mm dead area (total area is a square of 52 mm side to resemble the H8500 modules with 0.6 cm pad)

• thickness of the cells is random within [0, 2cm]

(to randomize material budget)

 z position of the cell is varied randomly within 8 cm from the end of the GAP

(to randomize material position)

Time-of-flight differences due to multiple scattering in the wall

A realistic scenario:

- particle momenta of [2.0, 2.5] GeV
- 1m GAP
- random wall width [0, 2.0] cm
- random wall position (within 8 cm, close to GAP end)
- tracks with original generated angles

Time-of-flight differences due to multiple scattering in the wall

A realistic scenario:

- particle momenta of [2.0, 2.5] GeV
- 1m GAP
- random wall width [0, 2.0] cm
- random wall position (within 8 cm, $close^{25}$ to GAP end)
- tracks with original generated angles

• negligible effect !!

Time-of-flight differences due to multiple scattering in the wall

A "artificially worst case" scenario:

- very low particle momentum (~ 500 MeV) and maximal wall width (2 cm) to maximize effects of multiple scattering
- 4m GAP and wall close to radiator, to magnify to effect of multiple scattering
- tracks at fixed angle (25 degrees)

Interference with TOF: preliminary studies Time-of-flight differences due to multiple scattering in the wall

An "artificially worst case" scenario:

- very low particle momentum (~ 500 MeV) and maximal wall width (2 cm) to maximize effects of multiple scattering
- 4m GAP and wall close to radiator, to magnify to effect of multiple scattering
- tracks at fixed angle and normal to the RICH surface (25 degrees)

• effects within TOF detector resolution

The mirror option to limit detector area (old production)

The mirror option: reflection outside

The mirror option: reflection inside

Conclusions (2nd part)

• Interference with TOF

- preliminary studies show negligible effects on TOF detector performances due to multiple scattering on photon-detector material (material wall)

- effects of secondary particles emission need to be examined

Reduction of detector area

- two different mirror configurations were examined
- need to repeat studies with the new productions (with toroid)

• Future developments needed for more refined studies

- use of GEANT4 and implementation within the JLAB12 simulation framework
- reconstruction of multi-tracks events
- optimization of mirror geometry

Backup slides

Refraction index: freon

Simulation based on most conservative n (Moyssdes)

Refraction index: quartz

Quartz absorption length and refraction index from Khashan and Nassif, Optic communications 188 (2001) 129

Mean πk separation (4.5-5 GeV)

Liquid $C_6 F_{14}$ (freon) radiator

Mean πk separation (3-8 GeV)

Gamma hits with C₆F₁₄ 100 100 x (cm) p = 2.5 GeV p = 4.5 GeV 0 0 -100 -100 -200 -200 -300 -300 -100 100 -100 100 0 0

The proximity focus option

Direct measurement in a restricted area

Mean πk separation (3-8 GeV)

Mean p.e. number (3-8 GeV)

The Aerogel option

Mean $\pi \mathbf{M}_{e}$ separation and \mathbf{M}_{e} GeV)

Mean p.e. number (3-8 GeV)

ID efficiency (3-8 GeV)

The Aerogel option

Trasmission length is undergoing significantly improvements

2005 IEEE Nuclear Science Symposium Conference Record M. Tabata et al.

Mean πk separation (5-8 GeV)

