RICH GEMC GEOMETRY

Contalbrigo Marco & Luciano Pappalardo INFN Ferrara

Rich Meeting, 13 January 2012

Geometry:

- rich_build_radtrap_mirror35_default.pl
- On the Jlab GEMC database

Validation:

- ✓ handle of MA-PMT copies
- ✓ volume overlaps
- refine materials
 (to match aerogel transmission)
- □ user friendly layout

The Open or Isolated Sector

Material:

Mmaterials.cc MDetectorConstruction.cc

On the Jlab GEMC database

Validation:

- ✓ match aerogel transmission
- ✓ MA-PMT window
- aerogel transmission (BELLE/Novosibirsk values)
- □ Mirror imperfections/diffusion ?
- □ Lucite wrap ?

Digitalization:

RICH_hitprocess.cc RICH.bank user_hits_def.txt Number of anode pixels:64 (8x8 matrix)Pixel size / Pitch at center:5.8 x 5.8 / 6.08 mmEffective area:49 x 49 mmDimensional Outline:52 x 52 x 28 mmPacking density (Effective Area / Esternal Size) :89 %

On the Jlab GEMC database

Validation:

match geometry
QE energy range
add to output
QE curve ?

64

8

Reconstruction:

Private codes

Likelihood based on direct ray tracing

Validation:

- ✓ benchmark events
- □ x-check
- Cherenkov light from MA-PMT window
- Resolution on charged track impact parameters
- Background (Rayleigh)

Contalbrigo M.

Rich Meeting, 13th January 2012, JLab

Contalbrigo M.

Rich Meeting, 13th January 2012, JLab

Contalbrigo M.

Rich Meeting, 13th January 2012, JLab

Contalbrigo M.

Rich Meeting, 13th January 2012, JLab

The likelihood

For a given track t and particle hypothesis $h (= \pi, K, p)$ use **direct ray tracing** for a large number of generated photons to determine the **hit probability for each PMT**

The **measured hit pattern** is compared to the hit **probability densities** for the different hypotheses through a likelihood function:

 $L^{(h,t)} = \sum_{i} log[P_{PMT}^{(h,t)}(i)C_{PMT}(i) + \overline{P}_{PMT}^{(h,t)}(i)(1 - C_{PMT}(i))]$

(the hypothesis that maximizes $\mathbf{L}^{(\mathbf{h},\mathbf{t})}$ is assumed to be true)

 $C_{PMT}(i)$ is the hit pattern from data $\begin{bmatrix} = 1 & \text{if the ith PMT is hit} \\ = 0 & \text{if the ith PMT is not hit} \end{bmatrix}$

 $P_{PMT}^{(h,t)}(i)$ is the probability of a hit given the kinematics of track t and hypothesis h

$$P_{PMT}^{(h,t)}(i) = 1 - exp(-\frac{N^{(h,t)}(i)}{\sum_{i} N^{(h,t)}(i)} n^{(h,t)} - B(i))$$

 $\overline{P}_{PMT}^{(h,t)}(i) = 1 - P_{(PMT)}^{(h,t)}$ is the probability of no hit $n^{(h,t)}$ is the total number of expected PMT hits B(i) is a background term (assumed to be 10⁻⁴, fine with prelim. studies)

The pattern recongnition

Contalbrigo M.

Rich Meeting, 13th January 2012, JLab

The goodness parameter

For a given track t and particle hypothesis $h (= \pi, K, p)$ use **direct ray tracing** for a large number of generated photons to determine the **hit probability for each PMT**

The **measured hit pattern** is compared to the hit **probability densities** for the different hypotheses through a likelihood function:

$$L^{(h,t)} = \sum_{i} log[P_{PMT}^{(h,t)}(i)C_{PMT}(i) + \overline{P}_{PMT}^{(h,t)}(i)(1 - C_{PMT}(i))]$$

Sum on all PMTs: it depends on the total number of readout channels and the background level

$$LH = L^{(h,t)} - L^{(h,t)}_{MIN}$$

L minimum: no signal, hits where only background is expected

$$R_{QP} = 1 - \frac{LH^{2st}}{LH^{1st}}$$

LH results for positive hadrons

LH performances

Low momentum: smaller efficiency due to angular spread and small $\mathrm{N}_{\mathrm{q.e.}}$

High momentum: high uniform efficiency, ID more challenging (broader R_{QP})

Contalbrigo M.

Hadron ID vs momentum/polar angle

Hadron ID vs azimuthal angle

N. hit > 2 $R_{QP} > 0.0$ 3 < E < 8 GeVEfficiency/ Contamin Entries 371602 Entries 649831 Entries 371423 1 $\pi \rightarrow \mathbf{k}$ $\pi \rightarrow \mathbf{p}$ ๅ_ฏกั้มไๅ_เ๛ง||โวยะไ|โวงงง| (x100) -(x100) പഹി 0.75 0.5 0.25 0 Efficiency/ Contamin 371913 Entries Entries 620838 Entries 371511 1 $\mathbf{k} \rightarrow \mathbf{k}$ k → p $\mathbf{k} \rightarrow \pi$ (x100) x100) 0.75 นไครงไไรรงไไรรงไไรรู [0.5 0.25 0 Efficiency/ Contamin 371884 371558 Entries Entries Entries 546651 1 $\mathbf{p} \rightarrow \mathbf{k}$ $\rightarrow p$ p π ′x100) 0.75 ╞<mark>┛</mark>┩┉┘║<mark>╻╓║</mark> 0.5 0.25 0 0 200 0 200 200 0 φ (deg) ϕ (deg) **(deg)**

Almost uniform within a sector

Drop in performances at the sector edge due to the RICH structure

Hadron ID vs momentum/polar angle

Aerogel: - n=1.05, λ=5.5 cm - thick. increasing with radius: 2-4-6-8-10 cm Mirror: 14° - 35° - 90% reflectivity MA-PMTs: H8500 eff=0.65

Large angles challenging for Positive charged hadrons

Open vs isolated sectors

Isolated sectors show slightly worse performances

Contalbrigo M.

Rich Meeting, 13th January 2012, JLab

Rayleigh scattering

Just a first blind look shows a potential issue Benefit of lucite wrap to be investigated

Conclusions

Aerogel provides in principle a good pion/kaon separation up to 8 GeV/c

Systematic studies performed with a GEANT3-based simulation indicate a suitable configuration for the RICH in terms of pions/kaons separation is achievable

Standard GEMC setup (GEANT4-based)

- ✓ Detailed geometry
- ✓ Optical effects (Rayleigh + mirror reflectivity)
- Realistic components characteristics
- ✔ Digitalization
- * Validation of the preliminary results ongoing
- * Optimal compromise to be found

> A reconstruction algorithm for quantitative studies under test:

- * Looking for the limiting cases
- * CPU time consuming (need optimization);
- First estimate of Background
 - * Coming mainly from photon conversions in the aerogel (from Moeller showering)
 - * The level seems acceptable (spatial distribution to be tested)