Aerogel measurements and monitoring

L. Barion, M. Contalbrigo, L.L. Pappalardo INFN-Ferrara

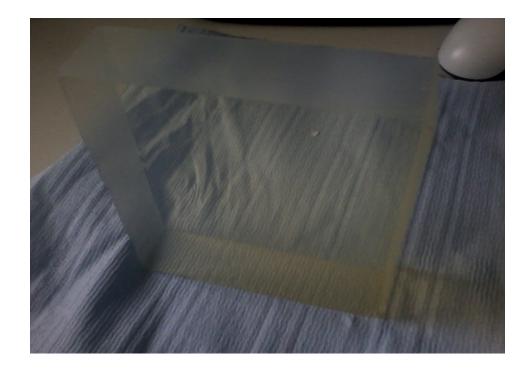
Restoring the transparency

The Novosibirsk aerogel is hydrophilic, i.e. tends to absorb humidity from the air, resulting in a worsening of the optical preformances, and in particular of the transparency.

Several methods were tested to restore the transparency after exposure to air (i.e. humidity):

- Storing the tiles in a dry atmosphere environement (e.g. in dry cabinet)
- Storing the tiles in a box fluxed with nitrogen
- Baking the tiles at few hundreds (celsius) degrees for a few hours

We experienced that the transparency is approximately preserved if the tile is sealed within a small plastic bag.

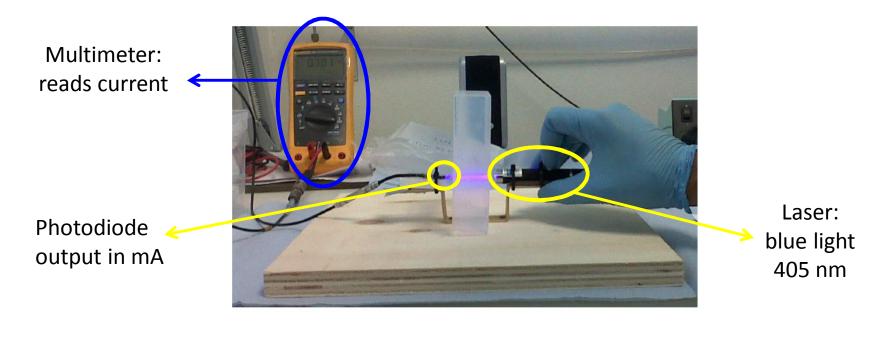


Restoring the transparency

The Novosibirsk aerogel is hydrophilic, i.e. tends to absorb humidity from the air, resulting in a worsening of the optical preformances, and in particular of the transparency.

Several methods were tested to restore the transparency after exposure to air (i.e. humidity):

- Storing the tiles in a dry atmosphere environement (e.g. in dry cabinet)
- Storing the tiles in a box fluxed with nitrogen
- Baking the tiles at few hundreds (celsius) degrees for a few hours



- First aerogel tile exposed to Nitrogen line (not clean!)
- Always check that Nitrogen line is clean enough!!

Monitoring the transparency (1)

The aerogel transparency was moniotored many times during the test beam at CERN, usually before and after being used on beam (i.e. exposed to air).

Fast measurements were performed with a very simple set-up:

$$T_i = \frac{I_{aerogel}}{I_0}$$

Measured without aerogel (background)

$$\langle T \rangle = \frac{1}{10} \sum_{i=1,10} T_i$$

Monitoring the transparency

The method is fast (a few minutes for each set of 10 measurements) but introduces several systematic effects:

- the photodyode was not tightly fixed to the support (to prevent damages), so its position relative to the laser could have slightly changed during the measurements
- Impossibility of illuminating every time the same point of the aerogel surface. Possible effect of local non-homogeneities
- During each measurement the multimeter quickly reaches a pseudo-stable value (for 1-2 seconds) followed by a slow fall-down of the signal amplitude, probably due to the non-uniform intensity of the laser (powered by standard batteries) over time.

The effects above result in a broadening of the measured transparencies for each tile. The RMS of each set of measurements was assigned as an estimate of the global systematic uncertainty ΔT

Measurement of transparency (2)

More precise measurements were performed in Ferrara (before and after) the CERN testbeam using a Perkin-Elmer spectrophotometer.

The uncertainty assigned to the spectrophotometer measurements takes into account the spread of T values obtained by illuminating 6 different positions of a given tile:

$$\Delta T_{spectr} = \frac{1}{8} \sum_{i=1,8} \left(\frac{T_{max} - T_{min}}{2} \right) \approx 0.007$$

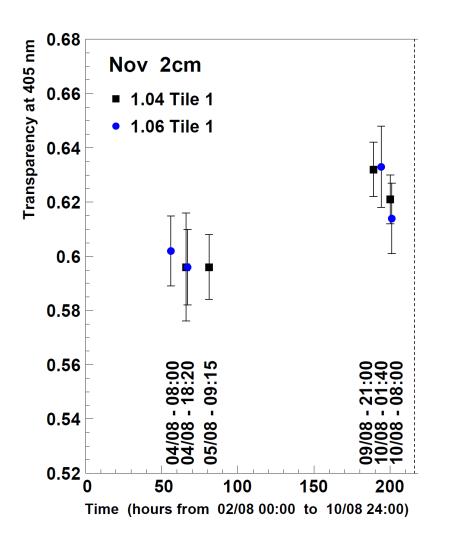

Name	n	thickness (cm)	area (cm \times cm)
Nov 1.04 2cm tile1	1.04	2	6 imes 6
Nov $1.05 \ 2 \text{cm tile} 1$	1.05	2	6 imes 6
Nov $1.05 \ 2 \mathrm{cm} \ \mathrm{tile} 2$	1.05	2	6 imes 6
Nov 1.06 2cm tile1	1.06	2	6 imes 6
Nov 1.05 3cm tile1	1.05		6 imes 6
Nov 1.05 3cm tile3	1.05		6 imes 6
Nov 1.05 3cm tile4	1.05	3	6 imes 6
Nov 1.06 3cm tile1	1.06		6 imes 6
Nov 1.06 3cm tile2	1,0,6	3	6 imes 6
Nov 1.05 2cm Sample1	1.05	2	10 imes10
Nov 1.05 2cm Sample2	1.05	2	10 imes 10
Nov 1.05 2cm Sample3	1.05	2	10 imes10
Nov $1.05 \ 2 \mathrm{cm} \ \mathrm{Sample4}$	1.05	2	10 imes10
Nov 1.05 2cm Sample 5 $$	1.05	2	10 imes10
Nov 1.05 2cm Sample 6 $% \left(1.05\right) =0.01$	1.05	2	10 imes10
Nov 1.05 2cm Sample 7	1.05	2	10 imes10
Nov 1.05 2cm Sample8	1.05	2	10 imes10
Nov $1.05 \ 3 cm \ AMS1$	1.05	3	10 imes10
Nov $1.05 \ 3 \mathrm{cm} \ \mathrm{AMS2}$	1.05		10 imes 10
Nov $1.05 \ 3 \mathrm{cm} \ \mathrm{AMS3}$	1.05		10 imes 10
Nov $1.05 \ 3 \mathrm{cm} \ \mathrm{AMS4}$	1.05		10 imes10

Table 1: Aerogel tiles used in the test-beam

3 refractive indices (1.04, 1.05, 1.06)

2 thicknesses (2cm, 3cm)

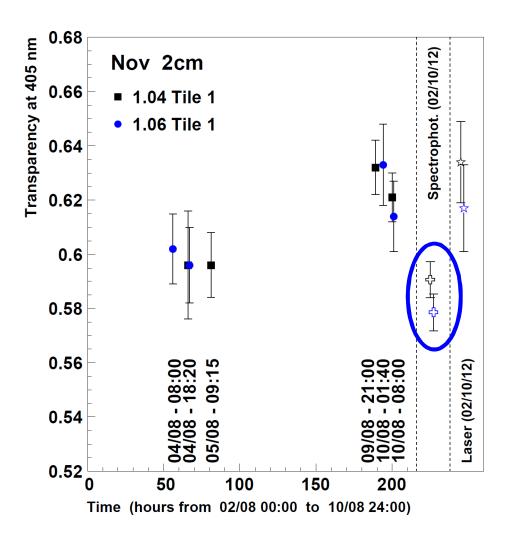

2 areas ($6 \times 6 \ cm^2$, $10 \times 10 \ cm^2$)

Table 2: Nov. 1.04 2cm tile1					
Date/time of meas.	T_{min}	T_{max}	$T_{average} = \Delta T$	notes	
04/08/2012 18:20	0.570	0.638	0.596 - 0.020	meas. before SiMP run 390	
05/08/2012 09:15	0.580	0.611	0.596 0.012	meas. after SiMP run 390	
09/08/2012 21:00	0.614	0.648	0.632 0.010	meas. before SiMP run 432	
10/08/2012 08:00	0.608	0.637	0.621 0.009	meas. before final packing	

Table 3: Nov. 1.06 2cm tile1

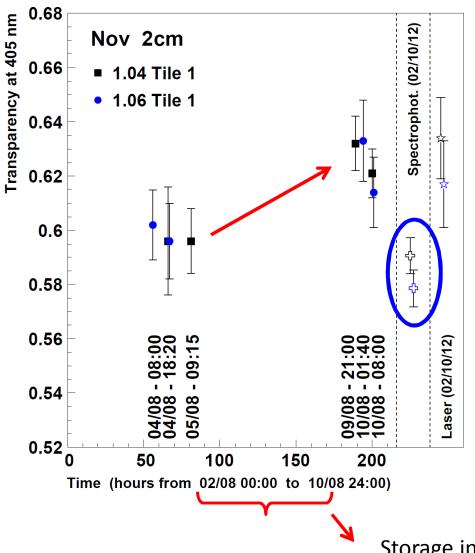

Date/time of meas.	T_{min}	T_{max}	$\mathbf{T}_{\mathrm{average}} = \Delta T$	notes
04/08/2012 08:00	0.584	0.619	0.602 0.013	meas. before SiMP run 383
04/08/2012 18:20	0.575	0.622	0.596 0.014	meas. after SiMP run 389
10/08/2012 01:40	0.615	0.657	0.633 0.015	meas. before SiMP run 439
10/08/2012 08:00	0.597	0.639	0.614 0.013	meas. before final packing

Table 2: Nov. 1.04 2cm tile1					
Date/time of meas.	Date/time of meas. T_{min} T_{max}			ΔT	notes
04/08/2012 18:20	0.570	0.638	0.596	0.020	meas. before SiMP run 390
05/08/2012 09:15	0.611	0.596	0.012	meas. after SiMP run 390	
09/08/2012 21:00	2012 21:00 0.614 0.64		0.632	0.010	meas. before SiMP run 432
10/08/2012 08:00	0.608	0.637	0.621	0.009	meas. before final packing
02/10/2012	0.608	0.654	0.634	0.015	meas. in Ferrara (laser)
02/10/2012			0.591	0.007	meas. in Ferrara (spectrophot.)

Table	3:	Nov.	1.06	$2 \mathrm{cm}$	tile1

Date/time of meas.	T_{min}	T_{max}	$T_{average} = \Delta T$	notes
04/08/2012 08:00	0.584	0.619	0.602 0.013	meas. before SiMP run 383
04/08/2012 18:20	0.575	0.622	0.596 0.014	meas. after SiMP run 389
10/08/2012 01:40	0.615	0.657	0.633 0.015	meas. before SiMP run 439
10/08/2012 08:00	0.597	0.639	0.614 0.013	meas. before final packing
02/10/2012	0.590	0.639	0.617 0.016	meas. in Ferrara (laser)
02/10/2012			0.578 0.007	meas. in Ferrara (spectrophot.)

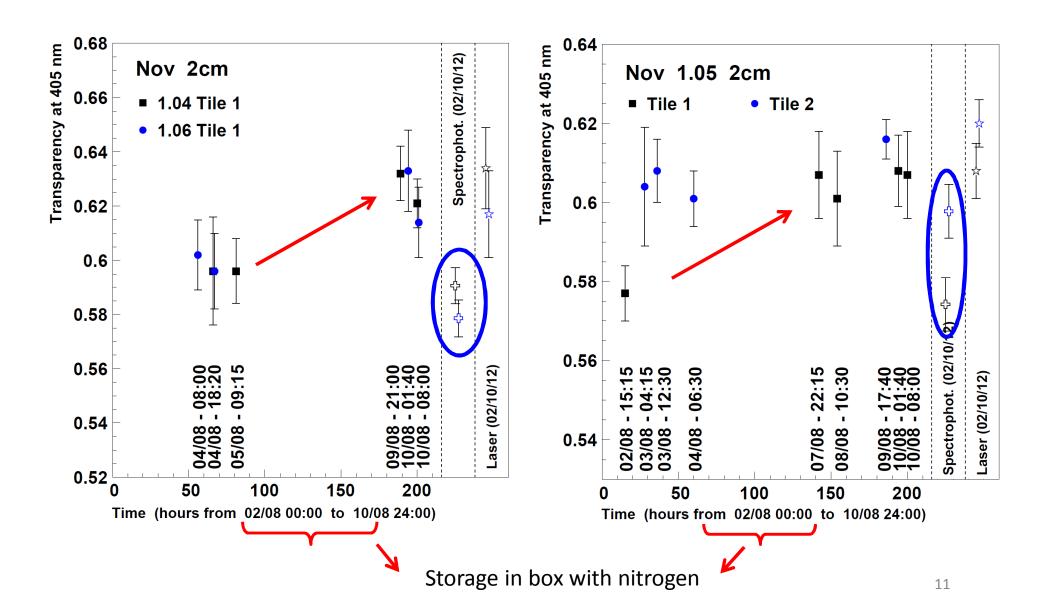
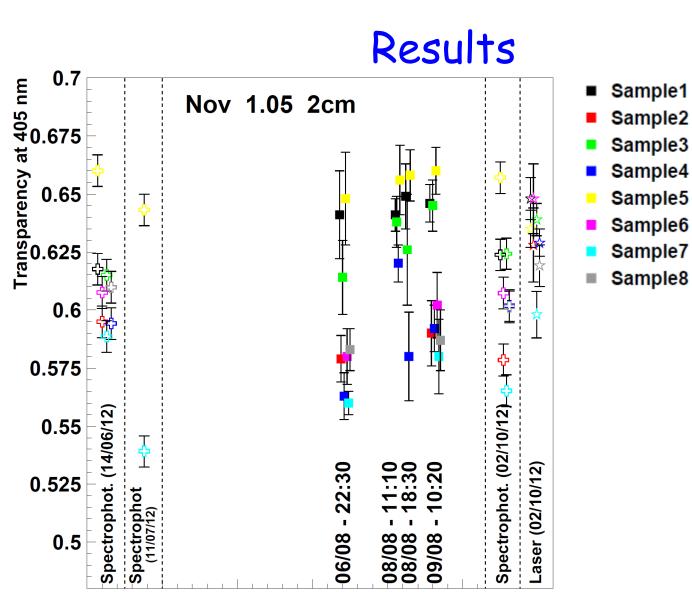
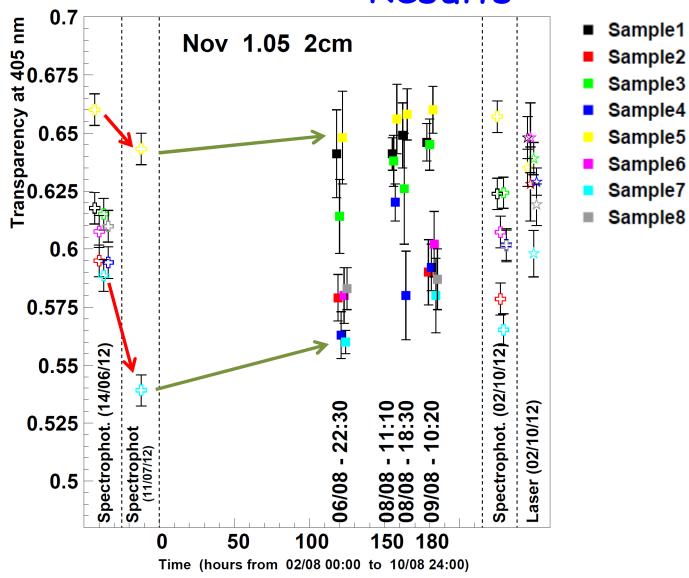


Table 2: Nov. 1.04 2cm tile1								
Date/time of meas.	T_{min}	T_{max}	$\mathbf{T}_{\mathrm{average}}$	ΔT	notes			
04/08/2012 18:20	0.570	0.638	0.596	0.020	meas. before SiMP run 390			
05/08/2012 09:15	2 09:15 0.580 0.61			/08/2012 09:15 0.580 0.61		0.596	0.012	meas. after SiMP run 390
09/08/2012 21:00	0.614 0.648		0.632	0.010	meas. before SiMP run 432			
10/08/2012 08:00	0.608	0.637	0.621	0.009	meas. before final packing			
02/10/2012	0.608	0.654	0.634	0.015	meas. in Ferrara (laser)			
02/10/2012			0.591	0.007	meas. in Ferrara (spectrophot.)			

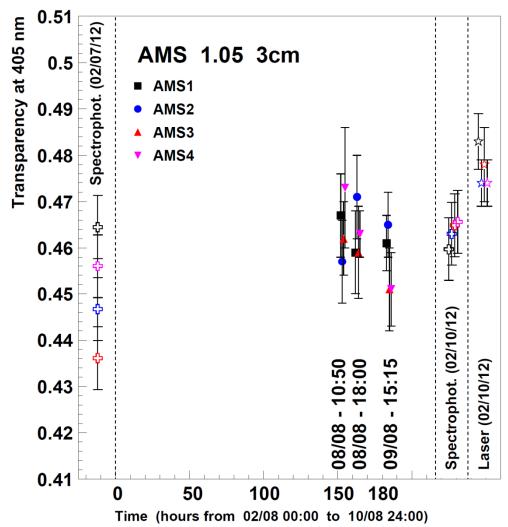
Table	3:	Nov.	1.06	$2 \mathrm{cm}$	tile1


Date/time of meas.	T_{min}	T_{max}	$T_{\rm average}$	ΔT	notes
04/08/2012 08:00	0.584	0.619	0.602	0.013	meas. before SiMP run 383
04/08/2012 18:20	0.575	0.622	0.596	0.014	meas. after SiMP run 389
10/08/2012 01:40	0.615	0.657	0.633	0.015	meas. before SiMP run 439
10/08/2012 08:00	0.597	0.639	0.614	0.013	meas. before final packing
02/10/2012	0.590	0.639	0.617	0.016	meas. in Ferrara (laser)
02/10/2012			0.578	0.007	meas. in Ferrara (spectrophot.)

Storage in box with nitrogen

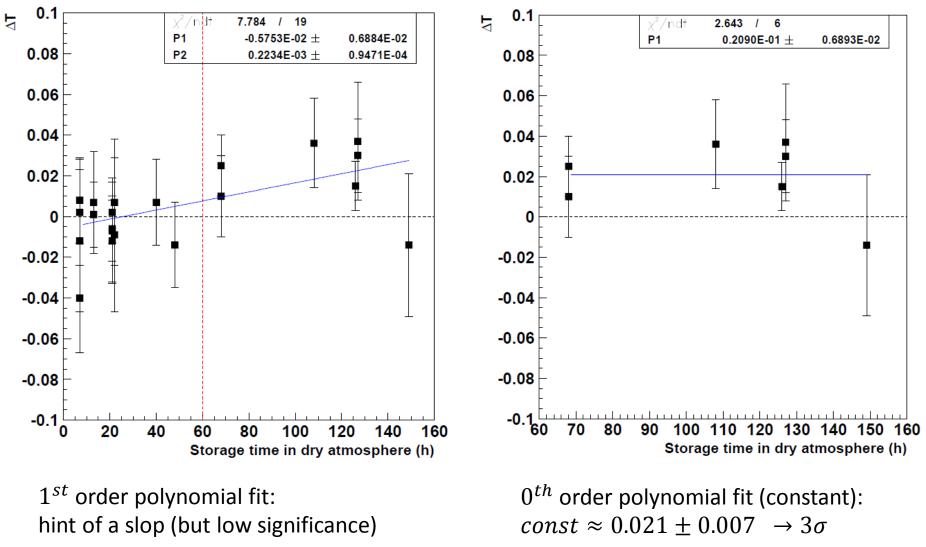

Results Very poor performances Transparency at 405 nm I ransparency at 405 nm Nov 1.06 3cm Spectrophot. (02/10/12) Nov 1.05 3cm 0.44 0.5 • Tile 2 Tile 1 Tile 1 • Tile 3 ▲ Tile 4 0.4 0.48 0.4 0.38 0.46 ¢ 0.36 T T T 0.44 Spectrophot. (02/10/12) 0.34 08:00 S 0 05/08 - 20:40 08/08 - 18:30 10/08 - 08:00 Laser (02/10/12) 30 0.32 16:50 S Laser (02/10/12) 20:20 0.42 2000 2000 8 20 ÷. . 03/08 04/08 . 02/08 03/08 0.3 80/60 08/08 05/08 05/08 07/08 00 03/ 03/ 03/ 0.28└─ 0 0.4 50 100 150 200 0 50 150 200 100 Time (hours from 02/08 00:00 to 10/08 24:00) Time (hours from 02/08 00:00 to 10/08 24:00)

Results are relatively stable



Time (hours from 02/08 00:00 to 10/08 24:00)

150 180

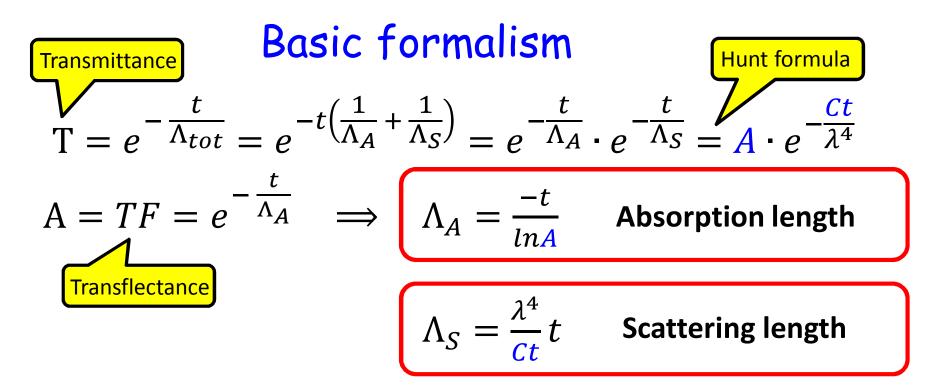


After storage in dry cabinet

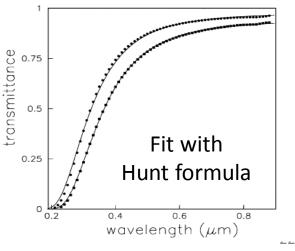

Aerogel tile	storage time (h)	T_{before}	T_{after}	ΔT
Nov. 1.05 3cm tile4	149	0.391 ± 0.018	0.377 ± 0.017	-0.014 ± 0.035
Nov. 1.06 2cm tile1	127	0.596 ± 0.014	0.633 ± 0.015	$+0.037 \pm 0.029$
Nov. 1.05 2cm tile1	127	0.577 ± 0.007	0.607 ± 0.011	$+0.030 \pm 0.018$
Nov. 1.05 2cm tile2	126	0.601 ± 0.007	0.616 ± 0.005	$+0.015 \pm 0.012$
Nov. 1.04 2cm tile1	108	0.596 ± 0.012	0.632 ± 0.010	$+0.036\pm0.022$
Nov. 1.06 3cm tile1	68	0.455 ± 0.007	0.465 ± 0.013	$+0.010 \pm 0.020$
Nov. 1.06 3cm tile2	68	0.455 ± 0.007	0.480 ± 0.008	$+0.025 \pm 0.015$
Nov. 1.05 3cm tile3	48	0.392 ± 0.009	0.378 ± 0.012	-0.014 ± 0.021
Nov. 1.05 2cm tile1	40	0.601 ± 0.012	0.608 ± 0.009	$+0.007 \pm 0.021$
Nov. 1.05 3cm tile1	22	0.386 ± 0.023	0.377 ± 0.015	-0.009 ± 0.038
Nov. 1.05 3cm tile3	22	0.363 ± 0.015	0.370 ± 0.016	$+0.007 \pm 0.031$
Nov. 1.05 3cm AMS1	21	0.459 ± 0.009	0.461 ± 0.006	$+0.002 \pm 0.015$
Nov. 1.05 3cm AMS2	21	0.471 ± 0.009	0.465 ± 0.007	-0.006 ± 0.016
Nov. 1.05 3cm AMS3	21	0.459 ± 0.013	0.452 ± 0.013	-0.007 ± 0.026
Nov. 1.05 3cm AMS4	21	0.463 ± 0.007	0.451 ± 0.013	-0.012 ± 0.020
Nov. 1.06 3cm tile1	13	0.458 ± 0.012	0.465 ± 0.013	$+0.007 \pm 0.025$
Nov. 1.06 3cm tile2	13	0.475 ± 0.007	0.476 ± 0.009	$+0.001 \pm 0.016$
Nov. 1.05 2cm sample1	7	0.641 ± 0.007	0.649 ± 0.014	$+0.008 \pm 0.021$
Nov. 1.05 2cm sample3	7	0.638 ± 0.011	0.626 ± 0.024	-0.012 ± 0.035
Nov. 1.05 2cm sample4	7	0.620 ± 0.008	0.580 ± 0.019	-0.040 ± 0.027
Nov. 1.05 2cm sample5	7	0.656 ± 0.015	0.658 ± 0.011	$+0.002 \pm 0.026$

Table 23: After storage in dry atmosphere

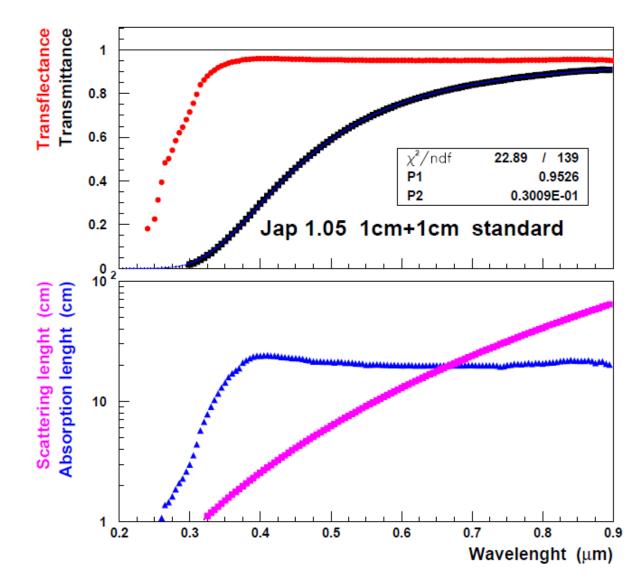
Tile	exposure time (h)	T_{before}	T_{after}	ΔT
Nov. 1.05 3cm tile3	57	0.378 ± 0.012	0.361 ± 0.010	-0.017 ± 0.022
Nov. 1.06 3cm tile1	37	0.461 ± 0.008	0.455 ± 0.007	-0.006 ± 0.015
Nov. 1.06 3cm tile2	37	0.464 ± 0.004	0.455 ± 0.007	-0.009 ± 0.011
Nov. 1.05 2cm sample1	37	0.641 ± 0.019	0.641 ± 0.007	0.000 ± 0.026
Nov. 1.05 2cm sample3	37	0.614 ± 0.016	0.638 ± 0.011	$+0.024\pm0.027$
Nov. 1.05 2cm sample4	37	0.563 ± 0.010	0.620 ± 0.008	$+0.057 \pm 0.018$
Nov. 1.05 2cm sample5	37	0.648 ± 0.020	0.656 ± 0.015	$+0.008 \pm 0.035$
Nov. 1.04 2cm tile1	15	0.596 ± 0.020	0.596 ± 0.012	0.000 ± 0.032
Nov. 1.05 3cm tile1	13	0.399 ± 0.012	0.372 ± 0.011	-0.027 ± 0.023
Nov. 1.06 3cm tile1	13	0.466 ± 0.010	0.458 ± 0.012	-0.008 ± 0.022
Nov. 1.06 3cm tile2	13	0.460 ± 0.009	0.475 ± 0.007	$+0.015\pm0.016$
Nov. 1.05 2cm tile1	12	0.607 ± 0.011	0.601 ± 0.012	-0.006 ± 0.023
Nov. 1.06 2cm tile1	11	0.602 ± 0.013	0.596 ± 0.014	-0.006 ± 0.027
Nov. 1.05 3cm AMS1	10	0.467 ± 0.009	0.459 ± 0.009	-0.008 ± 0.018
Nov. 1.05 3cm AMS2	10	0.457 ± 0.009	0.471 ± 0.009	$+0.014\pm0.018$
Nov. 1.05 3cm AMS3	10	0.462 ± 0.015	0.459 ± 0.013	-0.003 ± 0.028
Nov. 1.05 3cm AMS4	10	0.473 ± 0.019	0.463 ± 0.007	-0.010 ± 0.026
Nov. 1.05 3cm tile3	9	0.381 ± 0.013	0.392 ± 0.009	$+0.009\pm0.022$
Nov. 1.05 2cm tile2	8	0.604 ± 0.015	0.608 ± 0.008	$+0.004\pm0.023$
Nov. 1.05 3cm tile4	8	0.398 ± 0.014	0.391 ± 0.018	-0.007 ± 0.032


Table 24: After exposure to air

Conclusions


- We developed a simple set-up for measuring the aerogel transparency, which is sufficiently precise for testing large scale variations and general behaviours;
- A more precise set-up (spectrophotometer) is available in Ferrara;
- The general behaviour of the aerogel transparency during the cern test-beam was consistent with expectations (no bad surprises!) and with earlier measurements done with spectrophotometer
- The transparency can be restored with different methods:
 - storage in nitrogen (check that line is clean!) for at least a few days
 - storage in dry cabinet (few days/weeks)
 - baking (200 celsius, for a few hours)
- The transparency has shown to be stable if tiles are sealed in small plastic bags
- The spectrophotomter data show a systematically smaller transparency than measyred with the laser method. To be understood.

Backup



Procedure: measure $T(\lambda) \rightarrow$ fit with Hunt formula \rightarrow extract Λ_A and Λ_S

ELSEVIER Nuclear Instruments and Method	ls in Physics Research A 440 (2000) 338–347	NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Secton A	
1	ion of $n = 1.03$ silica as the RICH of HERM	•	
Hunt parameter	Average value	σ (%)	
A	0.964	2.4	
$Ct \ (\mu m^4)$	0.0094	8.3	

Ferrara measurements

