Hall B RICH DAQ

Benjamin Raydo Electronics Group (Physics Division)

Overview

- 1. RICH Detector PMT Array
- 2. PMT Motherboard Assemblies
- 3. MAROC3 FPGA Board
- 4. DREAM FPGA Board
- 5. Power/Signal Cabling
- 6. Backend DAQ

RICH PMT Array

~400 Multi-Channel PMTs for single RICH sector

- ~25,000 PMT channels
- Need high voltage, low voltage, slow control, digitization & readout

PMT Assembly

- x3 PMT Motherboard
- X2 PMT Motherboard
- One FPGA for each Motherboard supports I/O for ASIC chips
- Reduction of cabling
- Another board would support x2/x3 PMT assemblies
 - Provides mechanical support
 - Low voltage distribution
 - High voltage distribution (option)

Office of Nuclear Physic

-CJSA-

PMT Assembly x3 Version

PMT Assembly x2 Version

Digital FPGA PCB – MAROC3

MAROC3 Signals

- MAROC3 provides 64 digital outputs
- MAROC3 provides 1 muxed analog output
- Slow controls

MAROC3 FPGA Board Processing

- ~1ns TDC on 192 channels (3 chips * 64 signals)
- Buffer data for 8us (trigger decision time)
- Trigger will extract 1ns timing resolution hits to build event
- 3 ADC analog channels (3 chips * 1 analog mux output)
- Flash ADC, buffer data for 8us (trigger decision time)
- Trigger will extract pulse data to build event (for calibration/testing)
- 2.5Gbps SerDes provides reference clock, trigger, & readout data

U.S. DEPARTMENT OF ENERGY

Digital FPGA PCB – MAROC3 continued...

Digital FPGA PCB – DREAM

DREAM Signals

- DREAM provides 1 analog output
- Digital hit OR
- Slow controls

DREAM FPGA Board Processing

- 20MHz Flash ADC converter on readout
- DREAM buffers data for 8us (trigger decision time)
- Trigger will force ADC conversion on section of trigger window for all channels
- Trigger can sample 1 to a few points per channel/trigger
- Event builder can interpolate multiple samples to enhance timing resolution
- Event builder can provide integral of pulse
- FPGA will zero suppress channels and build event from channels over threshold
- 2.5Gbps SerDes provides reference clock, trigger, & readout data

Office of Nuclear Physic

Digital FPGA PCB – DREAM continued...

Trigger/Readout/Config

Serial Link to each x2/x3 PMT motherboard

- Full duplex running @ 2.5Gbps
- Fixed latency link (in DAQ -> PMT direction)
- Connected to backend DAQ VME system

Function in DAQ -> PMT direction:

- Synchronous reference clock @ PMT motherboard (<1ns uncertainty)
- Fixed latency trigger signal @ PMT motherboard
- Slow control writes

Function in PMT -> DAQ direction:

- Slow control read
- Trigger event readout

Support PCB

Gigabit Line Driver over Support PCB

2.5Gbps loss simulation over 30" of FR4 PCB Substrate

Office of Nuclear Physics

High Voltage

Option 1: Cable from PMT directly to HV supply

Most flexible option

Option 2: Run PMT HV lines on Support PCB

- Use multi-channel HV bus connectors at Support PCB edges
- Probably only makes sense to do if HV channels are to be grouped together

Low Voltage

Low voltage is for:

- Front-End PCB
 - ~640mW for each DREAM ASIC, ~224mW for each MAROC3 ASIC
- Digital FPGA PCB
 - A few W for each x^2/x^3 PMT motherboard (QTY = ~145)
- Optical Transceivers
 - ~1W for roughly every 4 x2/x3 PMT motherboard (QTY ~42)

Bus low voltage on Support PCB

- Deliver low voltage cable to each support PCB section
- Likely in the range of 4 to 5V, regulated down locally on PMT motherboard

Backend DAQ

Use Jlab SSP (developed for GlueX and CLAS12):

- VME/VXS DAQ Optics FPGA Module
 - Slow control to each PMT FPGA
 - Readout bridge for PMT motherboards
 - Trigger signal to PMT motherboards
 - Reference clock to PMT motherboards
- Readout
 - VME 2eSST @ 200MB/s
 - Large event buffer (4GByte)
- Fiber Link
 - 32 Full-duplex links
 - >100 meter range
 - Up to 5Gbps per link

RICH DAQ Occupancies

CLAS12 running conditions: 20kHz trigger

- VME Bus provides 200MB/s readout rate
- Readout controller with 10GBE
- RICH Sector: ~25,000 PMT Channels
- Occupancy Limit
 - MAROC3 hit: 32bit event word for each hit (1ns resolution time, channel ID)
 - DREAM hit: 32bit event word for each hit (1-20ns resolution time, channel ID, integral)
 - 200MB/s / 20kHz / 32bits = 2k Hits per event
 - 2k / 25k => maximum 8% sustained occupancy
- Limit could be improved by
 - Put SSP modules in multiple VME crates (2 crates gives 16% sustained occupancy)
 - Put VME bus readout limit to 320MB/s (gives ~12% sustained occupancy)

Full Readout Data Path

Thomas Jefferson National Accelerator Facility Page 18

Office of Nuclear Phys.

Details to work out/check...

- 1. Mechanical mounting
- 2. Fixed latency gigabit link
- 3. Radiation tolerance for optics & ICs
- 4. Magnetic fields, gas/vacuum, thermal concerns?

Summary

Office of Nuclear Physics

