RICH PROJECT OVERWIEV

Contalbrigo Marco INFN Ferrara

Rich Technical Review, 26th June 2013

The CLAS12 Spectrometer

PAC30 report (2006): Measuring the kaon asymmetries is likely to be as important as pions The present capabilities of the present CLAS12 design are weak in this respect and should be strengthened.

Kaon Program @ CLAS12

E12-09-08: Studies of Boer-Mulders Asymmetry in Kaon Electroproduction with Hydrogen and Deuterium Targets

RICH detector for flavor separation of quark spin-orbit correlations in nucleon structure and quark fragmentation

E12-09-07: Studies of partonic distributions using semi-inclusive production of Kaons

E12-09-09:

Studies of Spin-Orbit Correlations in Kaon Electroproduction in DIS with polarized hydrogen and deuterium targets

Contalbrigo M.

SIDIS Kinematics @ CLAS12

CLAS12 Momentum Range

Aerogel mandatory to separate hadrons in the 3-8 GeV/c momentum range with the required large rejection factors

→ collection of visible Cherenkov light
→ use of PMTs

Challenging project, need to minimize detector area covered with expensive photodetectors

The CLAS12 RICH

RICH goal:

$\pi/K/p$ separation of ~4 σ up to 8 GeV/c for a pion rejection factor ~ 1:500

INSTITUTIONS Jefferson Lab (USA)

INFN (Italy)

Bari, Ferrara, Genova, L.Frascati, Roma/ISS

Argonne National Lab (USA)

Duquesne University (USA)

Glasgow University (UK)

Mainz Institut fur Kernphysik (Germany)

University of Connecticut (USA)

UTFSM (Chile)

Base Configuration

1st sector in time for physics run (unpolarized and longitudinal polarize targets)

2nd++ sector for transverse target (left-right symmetry and statistics)

CLAS12 Geometry Constraints

Mean p.e. Number (5-8 GeV/c)

Mean p.e. Number (5-8 GeV/c)

Mean π/K Separation (5-8 GeV/c)

LHC-B

3 mrad single photon resolution with ~ 3 mm comparable pixel size

HERMES experiment

7.6 mrad single photon resolution, dominated by the \sim 2 cm pixel size

P (GeV/c)

Mean π/K Separation (5-8 GeV/c)

Magnetic Field

Photon Detectors: MA-PMT

Multi-Anode Photomultipliers:

Large Area (5x5 cm²) Cost-Effective Devices (~2.3 k\$ each) High packing density (89 %)

WAVELENGTH (nm)

Radiation Damage

Photon Detectors: SiPM

Expected neutron damage inside the BelleII spectrometer

Measured fluence @ Belle: 90/fb \rightarrow 1-10 10⁹ n/cm²

Expected fluence @ Belle-2: 50/ab \rightarrow 2-20 10¹¹ n/cm²

Expected fluence @ LHCB-2: 1 year \rightarrow 6 10¹¹ n/cm²

Fluence at CLAS12 allows the use of SiPM for future upgrades: fast develop in performances (dark count ~ 1 Mhz for 3x3 mm² devices) fast reduction in price (already comparable with MA-PMTs over 1 m²)

The Mirror System

The Mirror System

Mirror Technology

Metalized Carbon Fiber substrate

Self-supporting structure with minimal material budget (applications in physics experiments) Thin glass skin embracing a honeycomb core

Cost-effective technology for precise large area mirrors (applications in terrestrial telescopes)

LHCB mirror

MAGIC telescope

RICH Project Achievements

RICH outlook

Summer 2013:

- July: Finalize Test-beam Data Analysis (MC tuning)
- ✓ July: Test-beam Dedicated to Electronics
- August: Finalize CLAS12 RICH Project (TDR)
- ✓ 5-6 September: Project Review with DOE
- September: Start Procurement

GOAL: 1st sector ready for physics run in 2016