

Characterization of the components of the Ring-Imaging CHerenkov detector of the CLAS12 experiment

Candidate

Giorgio Battaglia

Supervisors

Prof. Paolo Lenisa

Dott. Marco Contalbrigo

CLAS12 Experiment

2

RICH Main goal: Hadron Identification

3 - 8 Gev/c

Ring Imaging CHerenkov

$$\cos\vartheta_{Ch} = \frac{1}{\beta n} v_{th} = \frac{c}{n} n = 1.05$$

The required single photon resolution is 5 mrad.

Single Photon Resolution

	Focusing mode _(mrad)	Proximity mode _(mrad)
Emission point	1.7	1.7
Chromatic aberration	2.5	3.3
Readout accuracy	0.82	2.45
Focusing system	≤1	-
Aerogel surface	~1	~1
σ _{ϑCh}	3.4	4.6

$$\sigma_{\vartheta_{Ch}}^{focus} = \sqrt{\left(\sigma_{\vartheta_{Ch}}^{spherical}\right)^2 + \left(\sigma_{\vartheta_{Ch}}^{aerogel}\right)^2 + \left(\sigma_{\vartheta_{Ch}}^{planar}\right)^2}$$

$$\sigma_{\vartheta_{Ch}} = \sqrt{\sum_{i} \left(\sigma_{\vartheta_{Ch}}^{i}\right)^{2}}$$

The aim of the thesis was to define each contribution of the focusing system resolution measuring the surface RMS of mirrors and the aerogel.

Surface RMS

Mirror Surface Measurements

Mirror $\sigma_{\vartheta Ch}$ Contribution

$$\beta = \alpha' - \vartheta_{mir} = \alpha - 2\vartheta_{mir}$$

$$\boldsymbol{\sigma}_{\vartheta_{\textit{light}}} \approx 2 \cdot \boldsymbol{\sigma}_{\vartheta_{\textit{mir}}}$$

$$\sigma_{\vartheta_{Ch}}^{planar} = \sigma_{\vartheta_{light}} \cdot \frac{1m}{3m} = 2 \cdot \sigma_{\vartheta_{mir}} \cdot \frac{1}{3} = \frac{2}{3} \cdot \sigma_{\vartheta_{mir}}$$

$$\sigma_{\vartheta_{Ch}}^{spherical} = \sigma_{\vartheta_{light}} \cdot \frac{2m}{3m} = 2 \cdot \sigma_{\vartheta_{mir}} \cdot \frac{2}{3} = \frac{4}{3} \cdot \sigma_{\vartheta_{mir}}$$

Planar Mirror Measurement

7

 σ_{θ} = 0.1 mrad

Spherical Mirror Measurement

Center coordinates x_0, y_0, z_0 and rwith a maximum likelihood fit

$\delta r = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2} - r$

Touching machine scan

Spherical Mirror Measurement

Touch machine scan September 2014

RMS 12.9 μm PV 70 μm

CMA measurement April 2014

RMS 0.38 μm PV 1.86 μm

Spherical Mirror Measurement

Radius of the mirror

RMS of δr of the mirror

Pointlike source and camera at the center of curvature

Simulated image profile

Simulated point-like image

$$\sigma_s = \frac{D_0}{4}$$

$$\sigma_{\vartheta_{mir}} = \frac{\sqrt{\sigma_s^2 + \sigma_p^2}}{2r} \approx \frac{\sigma_s}{2r} = \frac{D_0}{8r}$$

 ϑ distribution

Measured ϑ distribution

Total surface Radius **D**0 Max ϑ P.V. RMS σ_{ϑ} Date (µm) (µm) (mrad) (mrad) PL2 3485.7 70 12.9 24.96 0.9 0.15 Sep. PL3 48 9.8 20 0.72 0.08 3494.7 PL2 3492.7 8.8 0.46 0.14 46 12.8 31 Oct. PL3 3498.2 33 11.2 0.4 0.11 7 PL2 3494.7 8.12 0.13 36 6.6 0.29 06 Nov. PL3 80.0 3497.6 29 5.5 8 0.29 PL2 3494.1 59 12.4 22.56 0.81 0.35 17 Nov. PL3 3497.5 8.4 15.6 0.56 0.10 41 PL2 3498.1 4.8 6.4 0.23 0.10 29 01 Dic. PL3 0.24 0.05 3503.4 24 4.8 6.8

			Centr	alarea			
Date		Radius (mm)	Ρ. V. (μm)	RMS (µm)	D0 (mm)	σ _ϑ (mrad)	Max $artheta$ (mrad)
Sep.	PL2	3514.6	6.4	1.2	1.56	0.06	0.045
	PL3	3516.7	6.4	1.3	1.6	0.06	0.065
31 Oct.	PL2	3514.2	5.3	1.1	1.36	0.05	0.043
	PL3	3516.8	8.2	1.6	2	0.07	0.052
06 Nov.	PL2	3512.6	5.7	1	1.2	0.04	0.054
	PL3	3513.1	5.6	1.2	1.6	0.06	0.045
17 Nov.	PL2	3520.4	8.2	1.5	1.8	0.06	0.050
	PL3	3520.1	5.7	1.1	1.6	0.06	0.045
01 Dic.	PL2	3520.0	7.5	1.7	1.72	0.06	0.055
	PL3	3520.0	7.6	1.6	2.4	0.09	0.057

Mirror Surface Measurements

The measured values of $\sigma_{\vartheta_{Sph}}$ and $\sigma_{\vartheta_{Pla}}$ are compatible with the RICH requirements.

The rigidity of the rohacell foam core has been tested in different humidity conditions. Humidity and resin shrinkage are good candidates for the ageing of the spherical mirror.

Another technology has been adopted for the mirror core.

Aerogel Surface Measurements

Aerogel $\sigma_{\vartheta Ch}$ Contribution

$$n_1 \sin \alpha = n_2 \sin \beta$$

$$\beta = \arcsin\left(\frac{n_1}{n_2}\sin\alpha\right)$$

$$\beta = \vartheta_{aer} + \arcsin\left(\frac{1}{n}\sin(\alpha - \vartheta_{aer})\right)$$
$$\sigma_{\vartheta_{light}} = \left(1 - \frac{1}{n}\right) \cdot \sigma_{\vartheta_{aer}} \approx 0.05 \cdot \sigma_{\vartheta_{aer}}$$

$$\alpha_e = \vartheta_e + \arcsin\left[n\sin\left(\vartheta_i - \vartheta_e + \arcsin\left[\frac{1}{n}\sin(\alpha_i - \vartheta_i)\right]\right)\right]$$

$$\sigma_{\vartheta_{light}} = (n-1)\sqrt{\sigma_{\vartheta_i}^2 + \sigma_{\vartheta_e}^2} \approx 0.05 \cdot \sqrt{2} \cdot \sigma_{\vartheta_{aer}}$$

 $\alpha_e = \alpha_i$

In the RICH configuration

$$\sigma_{\vartheta_{light}} = (n-1)\sqrt{\sigma_{\vartheta_{i}}^{2} + \sigma_{\vartheta_{e}}^{2} + \sigma_{\vartheta_{i}}^{2} + \sigma_{\vartheta_{e}}^{2}} \approx 0.1 \cdot \sigma_{\vartheta_{aer}}$$
$$\sigma_{\vartheta_{Ch}} = \sigma_{\vartheta_{light}} \cdot \frac{1m}{3m} = 0.1 \cdot \sigma_{\vartheta_{aer}} \cdot \frac{1}{3} = 0.03 \cdot \sigma_{\vartheta_{aer}}$$

Touching Machine Measurement

Reference Position

Face 1

F

a

С

e

F

a

С

e

2

$$\nabla_{x} = \frac{\left(x - x_{mean}\right) \cdot c_{l}}{2 \cdot L}$$

Surfaces Comparison

Surfaces Comparison

Light Dispersion Measurement

measured aerogel

simulated light dispersion

light dispersion vs aerogel surface RMS

Light Dispersion Measurement

Light Dispersion Measurement

light dispersion

	Mean _(mrad)	RMS _(mrad)	
Light dispersion	5.71	1.44	
Aerogel surface	17.21	4.65	
ratio	0.33	0.31	

$$\sigma_{\vartheta_{Aer}} = \frac{pixel \ size}{ratio} = \frac{2.45mrad}{0.31} = 8mrad$$

aerogel surface RMS

light dispersion vs aerogel surface RMS (4 surfaces)

analytical calculations

Aerogel Surface Measurement

A not invasive laser reflection setup has been commissioned and validated.

Compatible results with the touching machine has been obtained.

The laser reflection setup can substitute the invasive touching machine characterization.

A general relation between the aerogel surface quality and transmitted light dispersion has been found.

It gives an upper limit of 8 mrad for the aerogel surface RMS.

The laser setup has been used to characterize the aerogel surface and validate the relation.

Single Photon Resolution

$$\sigma_{\vartheta_{Sph}} = 0.9 mrad$$

 $\sigma_{\vartheta_{Pla}} = 0.1 mrad$

$$\sigma_{\vartheta_{Aer}} = 8 mrad$$

$$\sigma_{\vartheta_{Ch}}^{focus} = \sqrt{\left(\frac{4}{3}\sigma_{\vartheta_{Sph}}\right)^2 + \left(\frac{2}{3}\sigma_{\vartheta_{Pla}}\right)^2 + \left(\frac{0.3}{3}\sigma_{\vartheta_{Aer}}\right)^2} =$$

$$=\sqrt{(1.44)^{2} + (0.06)^{2} + (0.8)^{2}} = 1.65 mrad$$

Aerogel Density Measurement

X-ray Measurement

	X-ray rate	Exposition time
Aerogel image, With aerogel and X-ray	a	$ au_{a}$
White image, Without aerogel	w	$ au_{w}$
Dark image, Without aerogel and X-ray	d	$ au_{d}$

$$\Re = \frac{(a+d)\tau_a - c_1 d\tau_d}{c(w+d)\tau_w - c_1 d\tau_d}$$

$$c_{1} = ?$$

$$c = \frac{\tau_{a}}{\tau_{w}} = \frac{Integral_{a}}{Integral_{w}}$$

X-ray Measurement

X-ray Measurement

$$\sigma_{\tau} = \frac{(a+d)\tau_a - c_1 d\tau_d}{c(w+d)\tau_a - c_1 d\tau_d} - \frac{a}{w} \approx \frac{d}{w} \left(1 - \frac{a}{w}\right) \frac{\tau_a - \tau_d}{\tau_a}$$

Energy _(kV)	d/w	a/w	σ,	$ au_{a (s)}$	$ au_{ m d~(s)}$	$ au_{\sf w\ (s)}$
12	3.3	0.990		45	40	45
15	0.9	0.990		20	25	20
16	12.0	0.197	0.9636	35	35	35
18	4.0	0.200	0.3200	37	40	40
20	1.2	0.290	0.0852	35	35	35
25	0.4	0.437	0.0225	30	30	30

37 **Measurement Comparison Touch machine** X-ray 000 <u>oi</u>s 2.46 19.4 80 2.44 800 19.2 2.42 70 700 2.4 60 600 19 _ 2.38 50 500 2.36 18.8 400 2.34 18.6 2.32 300 2.3 20 200 18.4 2.28 100 10 2.26 18.2 00 0₀ 100 200 300 400 500 600 700 800 10 20 30 40 70 80 90 bins

(2.43 - 2.28) / 2.43 = 6.17 % (19.4 - 18.2) / 19.4 = 6.19 %

Aerogel Density Measurement

An X-ray radiographic technique for density measurements has been studied.

After optimization, the X-ray results are compatible with the thickness variations measured by the touching machine.

This is indicative of small density variations but additional work is required to really access the density profile.

Conclusion

•A not invasive laser reflection setup has been commissioned and validated. The laser reflection setup can substitute the touching machine.

•The spherical mirror surface RMS is compatible with the RICH requirements. The rigidity of the rohacell foam core is not stable under different humidity conditions. Another technology has been adopted.

•A specification for aerogel surface quality has been defined and a laser tool to verify it commissioned.

•The quality of the studied components is generally suitable for the CLAS12 RICH but possible improvements has been suggested.