Forward Scattering Preliminary tests

L. Barion, G.Battaglia, M. Contalbrigo, P. Lenisa,
A. Movsisyan, L. Pappalardo
INFN Ferrara

RICH Meeting
29.05.2015

Introduction

Analysis based on publication from 2001:

R.De Leo et al.,"Chromatic aberration and forward scattering of light in silica aerogel", NIM A457 (200I) 52-63

Description of the setup:

In an inhomogeneous medium, the intensity of the light scattered at small angels depends on microscopic density fluctuations which cause local variations of the dielectric properties of the material. The anisotropy in the dielectric constant of the medium causes a light scattering which is strongly forward peaked, and contributes in to the angular dispersion of the light.

Introduction

Analysis based on publication from 200I:

R.De Leo et al.,"Chromatic aberration and forward scattering of light in silica aerogel", NIM A457 (200I) 52-63

Results from the reference:

$$
\frac{\mathrm{d} T_{\mathrm{Fs}, t}(\theta)}{\mathrm{d} \theta}=\frac{\mathrm{d} T_{t}(\theta)}{\mathrm{d} \theta} \frac{1}{T_{t}}-f_{\mathrm{B}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} \theta} \quad \frac{\mathrm{~d}^{2} T_{\mathrm{FS}}}{\mathrm{~d} \theta \mathrm{~d} x}=\frac{\left(1+\cos ^{2} \theta\right)}{\lambda^{4}}(\sin \theta) w f .
$$

Introduction

Description of the setup:

Measurements without aerogel: X, Y profiles

Nov 105 398m3

Face I

Face 2

Nov 105 398m3

Face I

Face 2

$$
\frac{\mathrm{d} T_{\mathrm{FS}, t}(\theta)}{\mathrm{d} \theta}=\frac{\mathrm{d} T_{t}(\theta)}{\mathrm{d} \theta} \frac{1}{T_{t}}-f_{\mathrm{B}} \frac{\mathrm{~d} T_{0}}{\mathrm{~d} \theta}
$$

Comparison of two surfaces

Novl05 398m3

Novl05 398m3

$$
\Delta\left(\theta_{X}\right)=\frac{\Delta x S c a l e \cos (\Theta)}{R}
$$

Novl05 398m3

Novl05 398m3

Complete scan of the surface with reflection

Novl05 398m3

Complete scan of the surface with reflection

Novl05 398m3

Surface map obtained from the integration of measured gradients.

