Electronics Frontend Prototype Status

M.Turisini

RICH Collaboration Meeting, 2014 November 12th

mercoledì 12 novembre 2014

Intro

- ASIC Boards available from October 15th
- 2 versions: 192 or 128 mapmt pixels discriminated outputs
- Need just one firmware version (shift register test)
- C/C++ software for configuration and measurements
- ROOT framework for analysis
- Open source library

Single Channel Block Schematics

Status and Perspective

4 Systems (10 ASIC +4 FPGA) PRODUCED Basic electrical tests: ALL PASSED Naked boards : PRODUCED for thermal and mechanical tests

Individual ASIC Configuration: READY Characterization: STARTED Readout development: STARTED Software library: PRELIMINARY DESIGN

- Fully featured firmware available shortly
- Data acquisition and analysis software ready for the beginning of next year

Open question (asic boards):

- charge measurements, onChip or onBoard?
- calibration with onBoard charge injector, how many charge levels?

Fitting into CLAS12

	CABLE	Diameter [mm]	Weight [gr/mt]
HV	RG58	5	35
LV	ALPHAWIRE 58124	minory 4	43
OPTICAL	(custom*)	2	28

*multicore cable will be used

Wiring:

• 3 type of cables

(HV,LV,OPTICAL)

- 138 cables for type 4 meters long each (Simplified model)
- Solutions under development...

<u>Heat production:</u>

- single ASIC absorption = 62mA
- total ASIC boards power consumption = 100 W
- -20% turning off unused subcircuitry: to be tested
- FPGA board power consumption 0,7W
- could increase up to 3W depending on the fw
- Measurements scheduled on early 2015

Test setup: charge injectors

- TCP/IP fast ethernet protocol to communicate with front end (ping FPGA board 30 µs)
- FPGA flashing easy to use
- ASIC configuration debugged
- External charge injector setup ready (left picture) SPE level
- Onboard charge injection tested with scalers array
- Probing signals allow for test and characterize ASIC response (right picture and next slides)
- In the next month we will go ahead in parallel (JLab and INFN)
- MAPMT readout after completion of charge response studies

Example1: Shaping Characterization

slope is almost zero, pulses grows up in duration

Linear region

3.75 mV/fC

Higher gain than Slow Shaper:

better signal to noise separation improved spe resolution better light yield than test beams at CERN! PLAN: characterize all the the shaping configuration offered by MAROC. Linearity region can be extended or reduced by changing the feedback network of the amplifiers.

Example2: Binary Output Characterization

Amplitude of the shaped pulse Width of the discriminated output

Conclusion

- 1. Frontend boards prototype are clean and well made
- 2. We are on schedule or even in advance
- 3. First test showed no issues in communication and good discrimination performance
- 4. Characterization and development will proceed in parallel between JLab and INFN
- 5. We can decide the definitive design of the boards with calm after having performed a complete set of studies.

Backup slides

Adapter Boards

Naked + Adapter

For mechanical tests ship to LNF - Italy

GND

J9

Three

Adapter

Board

MAPMT

Setup for devel/debug

Thanks to Benjamin Raydo and Luca Barion for their positive support

*Would be nice to have the possibility to readout actual slow control directly from the MAROC (when not running!) To check the correctness of the configuration.

Basic Validation Test

Tested 4 ASIC BOARD (i.e.10 MAROC)

BOARD_ID	N_ASIC	Current	VDDD	- VDDA	VH_HSTL	VREF_33		V_BG		V_BG = ASIC's internal voltage band gap.
			C88	C87	C114	C58	TP8	TP18	TP12	Used to determine chips integrity.
		[mA]				[Volt]				
#1	2	140	3,318	3,497	1,817	3,003	2,448	2,461	no	The expected value of 2,4 Volt has been observed for all the 10 chip on board.
#2	2	140	3,309	3,500	1,818	3,003	2,436	2,426	no	
#3	3	207	3,284	3,492	1,811	3,000	2,410	2,426	2,403	
#4	3	187	3,279	3,493	1,809	3,000	2,418	2,379	2,446	

Onboard regulated voltages have been measured. All values are compatible with the design pecifications

ASIC Board current absorpitons are consistent with MAROC datasheet

1,1 mA / channel

3,8 mWatt / channel

100 Watt / sector

mercoledì 12 novembre 2014

MAROC details

MAROC single channel