RICH TEST-BEAM: MC

Marco Contalbrigo, Luca Barion, Aram Movsisyan, Paolo Lenisa, & Luciano Pappalardo INFN Ferrara

Rich Meeting, Jlab - 20 February 2013

Simulation Optimization

Geometry

- same PMTs configuration file of DATA
- beam trajectory taken from GEMs
- box 0.5 degrees rotation with respect to the beam
- Aerogel optical properties
 - measured transmission
 - refractive index
 - measured dispersion (direct light data with filters)
- MA-PMTs digitalization
 - 🖌 🖌 dead area
 - double hits \rightarrow take the OR
 - PMTs global efficiency
 - cross-talk
 - 🖌 gain

Beam Tracks

Beam Profile

Aerogel Characterizartion

Contalbrigo M.

Rich Meeting, 20th February 2013, JLab

Mean Radius

Novosibirsk defines: n^2 (at 400 nm) =1+0.438* ρ

The tile used has $\rho = 0.230 \text{ g/cm}^3 \rightarrow \text{n} = 1.0492$

Pixelization

Contalbrigo M.

Rich Meeting, 20th February 2013, JLab

Pixelization

Contalbrigo M.

Rich Meeting, 20th February 2013, JLab

Gain Spread

Accounted only at PMT (not pixel) level so far

H8500 SN DA0269 - Global Efficiency Map

PMTs Hit Pattern

Backgroun Hits

DATA vs MC

MC (GEM values)

Pixel Residual Distributions

Pixel Residuals

Contalbrigo M.

Single photon Cherenkov-angle resolution

From photon emission point 1.5 mrad

From photon emission point 1.5 mrad

RICH TEST-BEAM: SIPM

Marco Contalbrigo, Luca Barion, Roberto Malaguti, Aram Movsisyan, Paolo Lenisa, Luciano Pappalardo & Stefano Squerzanti INFN Ferrara

Rich Meeting, Jlab - 20 February 2013

The SiPM Prototype

SiPM Signals @ -25°

The Commercial SiPM Matrix @ -25°

For a 12 cm radius Cherenkov cone and a 3 mm SiPM pixel, an occupancy of 4 % corresponds to about 24 p.e.

The Custom SiPM Matrix@-25°

The Commercial SiPM Matrix @ +25°

For a 12 cm radius Cherenkov cone and a 3 mm SiPM pixel, an occupancy of 4 % corresponds to about 24 p.e.

The Custom SiPM Matrix @ +25°

Average Number of Hits per Event

	Device	Т	Hits per event	N p.e.
	Good Pixels	-25°	0.04	22.6
	Good Pixels	+25°	0.04	22.6
	Matrix 1	- 2 5°	0.770	24.2
	Matrix 2	-25°	0.320	26.8
	Matrix 3	-25°	0.223	22.4
Cor Coc	nclusion: pled SiPM are a valio	Consistent with a factor in QE with respect H85		