INFN Groups and eRD14

INFN-FE CLAS12 RICH

Several INFN groups interested to pursue dRICH and other activities within the eRD14 Consortium

INFN-RM1 HERMES RICH Hall-A Tracking

CLAS12 RICH

Contributors: INFN-FE,LNF,RM1,BA,GE, JLab,

ANL, GWU, Duquesne U., UCONN, Glasgow U, UTFSM (Chile), KNU (Korea)

Dec 2012: Final T9 Test beam

Sep 2013: TDR & DOE Review

Jan 2018: **RICH 1st Module Installed** Start 2nd module construction

CLAS12 RICH Prototype @ CERN T9

Goal: Separation up to 8 GeV/c

CLAS12 RICH Advances

Aeronautic technology for structure

to maximize lightness and stiffness. Trapezoid of composite materials: CFRP inside acceptance, Al outside

Carbon Fiber Mirrors (spherical)

to maximize lightness and stiffness. Consolidate technology (HERMES, AMS, LHCb) but ~ 30 % material budget reduction

Photon Detector First use of H8500/H12700 flat panel multi-anode PMTs 64 pixels on a 5x5 cm² area

Glass-Skin Mirrors (planar)

Innovative technology never used in nuclear exps. ~ 1/5 cost for squared meter vs CFRP

CLAS12 RICH Advances

Front-end Electronics

Readout Electronics

Compact (matches sensor area) Modular Front-End (Mechanical adapter, ASIC, FPGA) Scalable fiber optic DAQ (TCP/IP or SSP) Tessellated (common HV, LV and optical fiber)

Applications:

- EIC R&D
- Gluex DIRC
- SOLID
- Medical Imaging
- Homeland Security

EIC eRD14, 19th September 2019

Back-end Electronics (JLab)

Optical ethernet (2.5 Gbps)

Small setups: TCP/IP Optical bridge / PC Desktop

Full experiment: SSP protocol SSP board / VSX crate

Next: Ethernet Switches

Optical bridge / PC Desktop Few FPGA units ~ 500 channels

SSP board / VSX crate 2 RICH sectors ~ 50 k channels

dRICH Prototype Design

Commercial vacuum technology for safety and cost effectiveness

dRICH Prototype Test

Readout box:

Independent element for flexibility: supports various detectors, cooling, UV filters....

Sensors:

B-field tolerant MCP-PMTs (LAPPs) SiPMs (MA-PMTs)

Ancillary Systems:

Gas Cherenkov for tagging(FTBF beam line)MWPC chambers for tracking(FTBF beam line)GEM chambers for tracking(in house)Gas recirculating circuit(optional)

dRICH Prototype Performance

1 p.e. Error (mrad)	Aerogel		C ₂ F ₆ Gas
Chromatic error	3.2	(3.2)	0.51
Emission	0.5		0.5
Pixel	2.5		0.42

Pulsed Laser Test Benches

Detailed characterization Sensors: gain, efficiency, cross-talk, radiation tolerance Electronics: gain, cross-talk, thresholds, time resolution

JLab

632 nm picosecond pulsed laser light Light diffuser to illuminate the whole MAPMT surface Standardized system with CLAS12 electronics H8500 6x6 mm² pixel sensor so far

INFN

632 nm and 407 nm picosecond pulsed laser light Light concentrator to scan the sensor surface Flexible layout supporting various sensors and Front-End electronics

Aerogel Test Laboratory

Existing facility to study detailed aerogel optical properties (refractive index, surface planarity, forward scattering) safe handling and Interplay with gas radiator

Controlled storage

Spectrophotometer

Mirror Test Laboratory

Existing facility to study detailed mirror optical properties (surface map, radius of curvature, reflectivity)

EIC Detector Environment

SiPM Option

Test of SiPM with RICH electronics

SiPM Radiation Tolerance

T. Tsang et al. JINST 11 (2016) P12002

I. Balossino et al. NIMA 876 (2017) 89

S12572 standard technology S13360 trench technology

T= 0 C few 10⁹ n_{eq} cm²

Paolo Carniti @ RICH 2018

SiPM: Hamamatsu S13360-1350CS (50 µm cells)

Temperature: -30 °C

Bias: V_{BR} + 1.5 V

Contalbrigo M.

 $10^9 n_{eq} cm^2$

Annealing at 250 °C

T= 84 K

EIC eRD14, 19th September 2019

SiPM Radiation Tolerance

Activity

- 2020 Prototype Design and Simulation Basic Mechanics Components test
- 2021 Basic Prototype Ready (basic tracking, commercial mirrors, 1 radiator choice) Component tests Test-beam 1 MA-PMTs (SiPMs) Proton pencil beam
- 2022 Refined Prototype Ready (custom mirrors, various radiators, refined tracking, gas system) Component tests Test-beam 2 MCP-PMTs, SiPMs Hadron beam

2023 TDR

Activity

FY	20-1	20-2	20-3	20-4	21-1	21-2	21-3	21-4	22-1	22-2	22-3	22-4	23-1	23-2	23-3	23-4	Tot	INFN
Barion (Hardware)				40				40			20						100	
Post-doc (Simulations)				10				20				20				10	60	60
Travel (Test-beam)				4			8	10			10	8				10	56	40
Mechanics				5			5					5					15	15
Windows				8			8										16	
Gas system							5					10						
Electronics				2			2					2					6	6
Tracking							3					3					6	6
Mirrors							4					20					24	6
Aerogel							6					6					12	6
Gas							6					10					16	
MC-PMTs							40										40	
LAPPs												40					40	
SiPMs							10					10					20	20
Total personal				50				68				58				30	216	100
Total material				13				87				114				0	127	59

SiPM Radiation Tolerance

Figure 3. (a) Representative reverse I–V characteristic of SiPM at room temperature, and its cumulative collection of the photoelectron histogram sampled at the peak of the time-gated single photoelectron charge signal pulses at ~ 3 volt over-voltage (b) before irradiation, (c) after neutron irradiation to a dosage of 10^9 n/cm², and (d) followed by 250°C thermal annealing, respectively. Single photoelectron histograms are in cyan, insets in (b) & (d) are the corresponding Poisson fitted photon number resolving histograms to ~ 2.6 photoelectrons (red).

EIC eRD14, 19th September 2019

Application: SiPM Arrays

Test of SiPM with RICH electronics

dRICH Prototype Design

Two radiators with almost overlapping rings (to optimize the active area)

Conf. 2: Gas (freon) ring

dRICH Prototype Design

H13700 READOUT BOX

Derived from CLAS12 RICH readout:

- 1024 channels
- MAROC 64 channel parallel digitalization
- FPGA generated 1 ns timestamp
- DAQ protocol based on VME/VSX SSP

Custom adapter boards

- Compact distribution
- Use of existing MAROC boards
- Light and gas tightness

SIPM READOUT BOX

SiPM might offer a cheaper and more efficient solution, expecially in a longer time perspective for other sectors

Robust device with low sensitivity to magnetic field Fast improvement in dark rate and cost but so far missing radiation hardness

Challenge: cooling integrated into the sensitive readout

Dedicated board for readout and cooling of a surface Mounting SiPM Matrix

Capitolo	Sezione	Anagrafica	Materiale	2019 (assegnato)	2020 (richiesto)
Consumo	СТ	0.4 FTE (5)	Meccanica (flange / dark box)	3	4
	LNF	0.3 FTE (3)	Scheda lettura ottica	2	
			Mirrors and supports		4
	RM1	0.2 FTE (2)	Gas+aerogel	1.5	2
	FE	0.3 FTE (2)	SiPM + cooling	3	
			Adattamento elettronica		2

Goal: base prototype ready for a test-beam in 2020.

Notes:

- bare mechanics elements costs quoted around 4 keu
 (does not account for mechanical adaptation for feed-throughs and windows)
- Freon gas is expensive due to minimum delivery requirements
- Commercial mirrors are quoted around 1000 euro each
 The supports should allow alignment

Modular RICH @EIC

See Xiaochun He talk

H13700 to reach the 3 mm spatial resolution

Two completed mRICH prototypes

TDC entries [#]

Modular RICH Analysis

Milestone: Finalizzazione risultati test beam 2018 di modular RICH

30/06/19

90%

Mismatch between DATA and MC resolution due to: beam dispersion and/or refractive index uniformity in the aerogel stack

CLAS12 RICH

INSTITUTIONSINFN (Italy)Bari, Ferrara, Genova, L.Frascati, Roma/ISSJefferson Lab (Newport News, USA)Argonne National Lab (Argonne, USA)Duquesne University (Pittsburgh, USA)George Washington University (USA)Glasgow University (Glasgow, UK)Kyungpook National University, (Daegu, Korea)University of Connecticut (Storrs, USA)UTFSM (Valparaiso, Chile)

Goal kaon-pion separation up to 8 GeV/c (prototype results):

CALS12 RICH Prototype @ CERN-T9

Goal kaon-pion separation up to 8 GeV/c

310

320

INFN Groups

INFN presence since the beginning (1991)

Increasing interest in 12 GeV era

Exp Users: ~40 FTEs, including ~15 students (PhD and post-doc) Theo Support: ~ 30 scientists, including ~ 10 students

Spokespersonship: > 20% of approved 12 GeV experiments

Responsibility roles: Hardware, Analysis, Coordinating

P. Rossi	Deputy Associate Director	
R. De Vita:	CLAS collaboration Chair (till 01/09)	
	Hall-B Software Responsible	
M. Battaglieri:	Hall-B Leader (since 16/09)	
	Program Deputy for the Laboratory	
M. Contalbrigo:	CLAS Coordinating Committee (till 01/0	9)
M. De Napoli:	HPS Executive Committee member	
A. Celentano:	Chair of HPS Publications Committee	

MoU: Renovated in September 2017

Management:Regular meetingslast: Ambasciata Italiana, December 4, 2019A. Zoccoli, A. Masiero, E. Nappi, M. Taiuti

PAC members: INFN members since 1991 now: A. Bacchetta INFN-PV

INFN Groups

RICH Readout Electronics

Readout Electronics

Compact (matches sensor area) Modular Front-End (Mechanical adapter, ASIC, FPGA) Scalable fiber optic DAQ (TCP/IP or SSP) Tessellated (common HV, LV and optical fiber)

Tile power dissipation ~ 3.5 W

Aerogel Chromatic Dispersion by Filters

CLAS12 prototype

Expected value from density: n²(400nm) = 1+0.438ρ n(400nm) = 1.0492

dRICH prototype

Direct measurement of the major expected contribution to the dRICH Cherenkov angle resolution.

EIC CHERENKOV DETECTORs (FE, LNF, CT, RM1)

mRICH as compact solution for Limited momentum range (up to ~ 10 GeV/c)

dRICH as dual radiator for Extended momentum range (up to ~ 50 GeV/c)

Collaboration with JLab, GSU, Hawaii U., DUKE