Flavor Separation Instruments for Nucleon Tomography

M. Contalbrigo – INFN Ferrara

25th October 2019, Aperitivi Scientifici Dip. Fisica and Astronomia, Bologna

The Nucleon Structure

Kinematic Coverage

Contalbrigo M.

Parton Content

6	[arXiv 1005.3113]
S	[arXiv 1010.0574]
SV	[arXiv 1404.4293]
	[arXiv 1408.7057]
NPDF	[arXiv 1406.5539]
١M	[arXiv 1601.07782]

MMHT	[arXiv 1412.3989]
HERAPDF2.0	[arXiv 1506.06042]
CT14	[arXiv 1506.07443]
CJ15	[arXiv 1602.03154]
ABMP16	[arXiv 1701.05838]
NNPDF3.1	[arXiv 1706.00428]

Parton Content & Lattice

Unpolarized moments

Polarized (helicity) moments

H-W Lin++ [1711.07916]

Inclusive Jets @HERA

(hard gluon emission) p_⊤>5 GeV $Q^2 > 5 GeV^2$

Part in a $p_{\tau} << Q$ TMD regime

The Strong Force Confined Universe

 $\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,c,b,t} \bar{q} \left[i\gamma^{\mu} (\partial_{\mu} - igA_{\mu}) - m_q \right] q$

Dynamic Spin

- Parton polarization
- Orbital motion
- Form Factors
- Magnetic Moment

Hadronization

- Spin-orbit effects
- Parton energy loss
- Jet quenching

Parton Correlations

- dPDFs
- Short range
- MPI

Color charge density

- Nucleon tomography
- Diffractive physics
- Gluon saturation
- Color force

The 3D Nucleon Structure

SIDIS & TMDs

TMDs: Transverse Momentum Parton Distributions

Parton kinematics and flavor from observed hadron kinematics and type

Access to:

3D momentum and spin-orbit effect:

Distribution and fragmentation convoluted:

$$d^6 \sigma^h \propto \sum_q e_q^2 q(x,k_T) \otimes D_q^h(z,p_T)$$

Unpolarised TMDs

 $m_W = 80370 \pm 7 \text{ (stat.)}$ $\pm 11 \text{ (exp. syst.)} \text{ MeV}$ $\pm 14 \text{ (mod. syst.)}$ +9 / -6 (TMDs)

0.26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.1

(P²)(z=0.5)[GeV²]

Spin-Orbit Effects: Sivers

Spin-Orbit Effects: Collins

Transversity & Tensor Charge

Tensor Charge & BSM Physics

Jefferson Lab

Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

CLAS12 in Hall-B

CLAS12 RICH

INSTITUTIONS				
INFN (Italy) Bari, Ferrara, Genova, L.Frascati, Roma/ISS				
Jefferson Lab (Newport News, USA)				
Argonne National Lab (Argonne, USA)				
Duquesne University (Pittsburgh, USA)				
George Washington University (USA)				
Glasgow University (Glasgow, UK)				
Kyungpook National University, (Daegu, Korea)				
University of Connecticut (Storrs, USA)				
UTFSM (Valparaiso, Chile)				

Goal kaon-pion separation up to 8 GeV/c (prototype results):

RICH Components

Aeronautic technology for structure

to maximize lightness and stiffness. Trapezoid of composite materials: CFRP inside acceptance, Aluminum outside

Carbon Fiber Mirrors (spherical)

to maximize lightness and stiffness. Consolidate technology (HERMES, AMS, LHCb) but ~ 30 % material budget reduction

RICH Components

Glass-Skin Mirrors (planar)

Innovative technology never used in nuclear experiments. 1.5 mm outside, 0.7 mm inside acceptance ~ 1/5 cost for squared meter vs CFRP

Large refractive index aerogel radiator Tiles up to 20x20x3 cm² at n=1.05.

Photo Sensor: MA-PMT

80 H8500 + 350 H12700

< 1 cm spatial resolution < 1 ns time resolution Compatible with the low torus fringe field

Average MA-PMT gain $\sim 2.7 \ 10^6$ Corresponds to SPE $\sim 400 \ fC$

- / 64 6x6 mm² pixels cost effective device
- High sensitivity on VIS towards UV light
- Mature and reliable technology
- Large Area (5x5 cm²)
- High packing density (89 %)
- Fast response
- Expensive technology

RICH Readout Electronics

Readout Electronics

Compact (matches sensor area) Modular Front-End (Mechanical adapter, ASIC, FPGA) Scalable fiber optic DAQ (TCP/IP or SSP) Tessellated (common HV, LV and optical fiber)

SSP Fiber-Optic DAQ

Tile power dissipation ~ 3.5 W

Contalbrigo M.

RICH Front-End Electronics

Analog: Charge (1 fC) Digital: Time (1 ns)

Trigger latency (8 µs)

Optical ethernet (2.5 Gbps)

Trigger: external internal self

On-board pulser

Linear response

Multiplexed readout Limited holding time delays

Used for calibrations

Contalbrigo M.

ADC Charge Measurement

Multiplexed readout up to 50 kHz

High resolution SPE spectrum

Viable for efficiency and gain monitors

In conjunction with timing, allows the study of PMT discharge and cross-talk

RICH Front-End Electronics

Analog: Charge (1 fC) Digital: Time (1 ns)

Trigger latency (8 µs)

Optical ethernet (2.5 Gbps)

Trigger: external internal self

On-board pulser

Digital response Working in saturated regime

64 parallel channel readout

8 μs FIFO and delays 1 ns time resolution

Contalbrigo M.

TDC Digital Readout

During Acceptance tests

During Internal Pulser Calibration

Discrimination down to 20 fC, i.e. few % of SPE, allows sensor characterization

Optical and Electric Cross-talk

Contalbrigo M.

Single Photon Discrimination

Flavor Sensitive Instruments, 24^{5d} October 2019, Bologna

RICH Installation

Electronic Pedestal

Count Rate [cps] Mar 18 Jan 18 -- off -- off -- 1000 V -- 1000 V 10⁵ 10⁴ 10^{3} 10² 10 100 600 Threshold [DAC] 200 300 400 500 and with grounding grid

Slot 3 Fiber 0 Asic 0 Channel 58 PMT 4 Pixel 54

Online Equalization

After equalization: distributions narrower and less sensitive to the common threshold saturate signals and cross-talk well separate

black: high threshold

red: intermediate threshold

green: low threshold

Single Photon Time Analysis

CLAS12 Reconstructed Time and Position:

Photons are traced using information from other CLAS12 detectors

RICH Measured Time and Position: Defined by the RICH DAQ

Good photons should match in time and space

Time analysis allows to separate spurious signals

Time Offsets

Contalbrigo M.

Single-photon time resolution better than the 1 ns specification

- before time-walk correction
- after time-walk correction

Single Photon Time Resolution

Cherenkov Angle Reconstruction

Analytic solution for direct photons

"Exact" solution for the Cherenkov Angle

Ray traced solution for direct photons

Assume knowledge of aerogel ref index

Only direct photons

Any photon

GOAL: get a Cherenkov angle estimate for each photon for detailed PID optimization

Cherenkov Angle Reconstruction

Cherenkov Angle Resolution

RGA data, direct photons No alignment of internal components Number of photons and single photon resolution close to TDR

Raw RICH alignment (not for internal components)

Hadron Separation

Hadron separation, direct photon, RGA data, raw alignment

Application: DIRC @ GlueX

The Future: EIC

The ultimate machine fro QCD

Well Beyond HERA:

- x 1000 Lumi
- Variable CM energy
- Polarized Beams
- Ion Beam
- Precision Detectors

CD0 + Site Decision Expected Soon

Contalbrigo M.

EIC Detector Challenges

Specific requirements to move beyond the longitudinal description

- Resolve partons in nucleons
 - high beam energies and luminosities
 Q² up to ~1000 GeV²
- Need to resolve quantities (k_t, b_t) of the order **a few hundred MeV** in the proton Correlated quantitites, multi-D analyses

High Granularity, wide dynamic range

- Need to detect all types of remnants to seek for correlations:
 - scattered electron
 - particles associated with initial ion
 - particles associated with struck parton
 - Large acceptance, Forward particle detection, Excellent PID

Particle Identification @ EIC

e-endcap:

medium momentum (< 10 GeV/c) aerogel modular Cherenkov

h-endcap:

medium and high momentum (3-50 GeV/c) dual radiator Cherenkov

Sensors

```
Workign at 1 T magnetic field ?
Radiation Tolerant ?
```

Asymmetric detector

Compact solutions to contain the cost

New high-tech materials

New technologies with emerging markets in medical imaging and homeland security

Activity linked to eRD14 EIC R&D consortium

Contalbrigo M.

Next PID Solutions: Modular RICH

Smaller, but thinner ring improves PID performance and reduces length

Contalbrigo M.

Next PID Solutions: Modular RICH

Compact / modular solution for few-GeV range

mRICH: An aerogel RICH with Fresnel lens focalization for compact and projective imaging

 π/K sepration up to ~ 10 GeV/c

Proposed also for sPHENIX @ BNL

mRICH Test Beam

H13700 to reach the 3 mm spatial resolution

Contalbrigo M.

Next PID Solutions: Dual Radiator RICH

Solution optimized for JLEIC

- Aerogel (n=1.02) & C_2F_6 gas
 - Continuous coverage
- Outward reflecting mirrors
 - · Sensors away from the beam
 - No scattering in aerogel
- Sector-based 3D focusing
 - · Reduced photosensor area
 - LAPPDs or SiPMs

0

10

20

30

40

50

60

momentum [GeV/c]

70

Dual RICH So Far

dRICH Prototype Design

Commercial vacuum technology for safety and cost effectiveness Overlapping rings for parallel beam particles

Contalbrigo M.

dRICH Prototype Performance

Montecarlo simulation

1 p.e. Error (mrad)	Aerogel	@EIC	C ₂ F ₆ Gas	@EIC
Chromatic error	3.2	(2.9)	0.51	(0.8)
Emission	0.5	(0.5)	0.5	(1.2)
Pixel	2.5	(0.5)	0.42	(0.5)

Development: Sensor and Readout

Readout Independent element for flexibility: supports various detectors with integrated cooling

Reference: MAROC + SSP/VSX

Dedicated: SiREAD + SSP/ethernet

Sensors **MA-PMTs**

B-field tolerant: MCP-PMTs (LAPPDs)

SiPMs

Contalbrigo M.

Development: SiPMs

Test of SiPM with RICH electronics

Contalbrigo M.

SiPM Radiation Tolerance

T. Tsang et al. JINST 11 (2016) P12002

I. Balossino et al. NIMA 876 (2017) 89

S12572 standard technology S13360 trench technology

T= 0 C few 10⁹ n_{eq} cm²

Paolo Carniti @ RICH 2018

SiPM: Hamamatsu S13360-1350CS (50 µm cells)

Temperature: -30 °C

Bias: V_{BR} + 1.5 V

T= 84 K 10⁹ n_{eq} cm² Annealing at 250 °C

Contalbrigo M.

Development: SiREAD Chip (HU)

Photograph of the first generation of 256-anode 2" PMT readout for use with mRICH prototype in the Fermilab beam test facility.

Development: Back-End (JLab)

Optical ethernet (2.5 Gbps)

Small setups: TCP/IP Optical bridge / PC Desktop

Full experiment: SSP protocol SSP board / VSX crate

Next: Ethernet Switches Optical bridge / PC Desktop Few FPGA units ~ 500 channels

SSP board / VSX crate 2 RICH sectors ~ 50 k channels

Contalbrigo M.

Nucleon Structure Landscape

Flavor Sensitive Instruments, 24^{5d} October 2019, Bologna

Executive Summary

The Next QCD Frontier

EIC (and JLab) is a unique opportunity for a comprehensive QCD study and possible breakthroughs

Potential impact on many fields of investigation

EIC offers immediate opportunities for supported R&D activities on science and technology

PID is crucial to achieve flavor separation

Seek for cost-effective solutions with potential application In other fields

Electron Ion Collider: The Next QCD Frontier

Understanding the glue that binds us all

Pulsed Laser Test Benches

Detailed characterization Sensors: gain, efficiency, cross-talk, radiation tolerance Electronics: gain, cross-talk, thresholds, time resolution

JLab

632 nm picosecond pulsed laser light Light diffuser to illuminate the whole MAPMT surface Standardized system with CLAS12 electronics H8500 6x6 mm² pixel sensor so far

INFN

632 nm and 407 nm picosecond pulsed laser light Light concentrator to scan the sensor surface Flexible layout supporting various sensors and Front-End electronics

HDice: Frozen Spin Polarized Target

e-@lab12

Polarized targets of solid HD in frozen spin mode. Longitudinal and Transverse Polarizations: up to 60% H or 35% D. Physics program rated as High-Impact by PAC41

RM1: dewars & cryostats HD gas purity by Raman distillation and analysis

Advantages:

- ✓ Dilution factors ~ 1
- Low holding magnetic fields

FE: frozen B field on a bulk SC MgB₂ magnet

Contalbrigo M.