HADRON IDENTIFICATION FOR FLAVOR SEPARATION AT EIC

Contalbrigo Marco INFN Ferrara

QCD with Electron-ion Collider (QEIC)

January 6, 2020 IIT Bombay, India

Kinematic Coverage

Parton Content

Parton Content

Unpolarized moments

Polarized (helicity) moments

Inclusive Jets @ HERA

Part in a $p_{\tau} << Q$ TMD regime

Can QCD be a precision science ?

Should not be confused with pQCD, which already can, but is not touching the intimate nature of the strong interaction

Single Spin Asymmetries

Proton Spin Budget

Non Perturbative QCD Signals

Non perturbative PDF component shows effects up to vector boson production at LHC

Still Surprising Proton

Is there a collective motion in small systems ?

$$rac{\mathrm{d}N}{\mathrm{d}arphi} = rac{N_0}{2\pi} \left(1+2v_1\cos(arphi-\Psi_1)+ rac{2v_2\cos[2(arphi-\Psi_2)]+\dots
ight)$$

The Strong Force Confined Universe

 $\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,c,b,t} \bar{q} \left[i\gamma^{\mu} (\partial_{\mu} - igA_{\mu}) - m_q \right] q$

Dynamic Spin

- Parton polarization
- Orbital motion
- Form Factors
- Magnetic Moment

Hadronization

- Spin-orbit effects
- Parton energy loss
- Jet quenching

Parton Correlations - dPDFs - Short range - MPI

Color charge density

- Nucleon tomography
- Diffractive physics
- Gluon saturation
- Color force

SIDIS & TMDs

3D momentum and spin-orbit effect:

Parton kinematics and flavor from observed hadron kinematics and type

Distribution and fragmentation convoluted:

$$d^{6}\sigma^{h} \propto \sum_{q} e_{q}^{2}q(x,k_{T}) \otimes D_{q}^{h}(z,p_{T})$$

Hadron PID is needed to access flavor separation

Contalbrigo M.

QEIC, 6th January 2020, IIT Bombay - India

Unpolarised TMDs

 $m_W = 80370 \pm 7 \text{ (stat.)}$ $\pm 11 \text{ (exp. syst.)} \text{ MeV}$ $\pm 14 \text{ (mod. syst.)}$ +9 / -6 (TMDs)

Medium Modifications

 $\hat{q}_0 pprox 0.020 \pm 0.005 ~{
m GeV^2/fm}$

N-B Chang ++ [arXiv:1401.5109]

Parton propagation in nuclear matter

In DIS: kinematic control via scattered electron and target nuclei

RHIC $\hat{q} \approx 1.2 \pm 0.3 ~{
m GeV^2/fm}$ Au+Au $\sqrt{s} = 200 ~{
m GeV/n}$

JET Coll. [arXiv:1312.5003]

LHC $\hat{q} pprox 1.9 \pm 0.7 ~{
m GeV^2/fm}$ Pb+Pb $\sqrt{s} = 2.76 ~{
m TeV/n}$

Spin-Orbit Effects: Sivers

Contalbrigo M.

QEIC, 6th January 2020, IIT Bombay - India

Lattice Achievements

Spin decomposition K-F Liu++ [arXiv 1203.6388] $\begin{array}{c} & & L^{u+d} \ (CI) \\ & & L^{u+d} \ (DI) \\ & & L^s \ (DI) \\ & & J^g \\ & & \Delta \Sigma \\ 1(10)\% \end{array}$

Helicity distribution

Transversity distribution

Contalbrigo M.

QEIC, 6th January 2020, IIT Bombay - India

Electron-Ion Collider

Data in the much needed "intermediate" energy region matching "pure" pQCD with "pure" TMD regime.

Nucleon Structure Landscape

EIC Detector Challenges

Specific requirements to move beyond the longitudinal description

- Resolve partons in nucleons
 - high beam energies and luminosities
 Q² up to ~1000 GeV²
- Need to resolve quantities (k_t, b_t) of the order **a few hundred MeV** in the proton Correlated quantitites, multi-D analyses
 - → High Granularity, wide dynamic range
- Need to detect all types of remnants to seek for correlations:
 - scattered electron
 - particles associated with initial ion
 - particles associated with struck parton
 - Large acceptance, Forward particle detection, Excellent PID

Detector Concepts @ EIC

Cherenkov Detectors for PID

Hadron Identification @ EIC

eRD14 Consortium: An integrated program for particle identification at a future EIC detector

h-endcap: A RICH with two radiators (gas+aerogel)p/k separation up to ~ 50 GeV/cdRICH

e-endcap: A compact and projective aerogel RICHp/k separation up to ~ 10 GeV/c mRICH

TOF: possible to cover lower momenta

Photosensors & electronics: parallel development to match the needs of the next generation devices

DIRC Evolution

DIRC @ EIC

Spherical 3-layer lens prototype

GEANT4 Simulations of the focal plane: Standard lens

25 30 35

00

15 20

10

5

45 50 x, [cm]

40

EIC DIRC should push forward the DIRC status-of-the-art

Performance of cost-saving wide plate with 3-layer lens promising

INFN Groups and eRD14

Contalbrigo M.

CLAS12 RICH Advances

M. Contalbrigo et al., NIMA876 (2017) 168-172

M. Contalbrigo et al., NIMA766 (2014) 22

TDC Δt

CLAS12 RICH Advances

Aeronautic technology for structure

to maximize lightness and stiffness. Trapezoid of composite materials: CFRP inside acceptance, Al outside

Carbon Fiber Mirrors (spherical)

to maximize lightness and stiffness. Consolidate technology (HERMES, AMS, LHCb) but ~ 30 % material budget reduction

Photon Detector First use of H8500/H12700 flat panel multi-anode PMTs 64 pixels on a 5x5 cm² area

Glass-Skin Mirrors (planar)

Innovative technology never used in nuclear exps. ~ 1/5 cost for squared meter vs CFRP

Contalbrigo M.

Modular Readout Electronics

Compact (matches sensor area) Modular Front-End (Mechanical adapter, ASIC, FPGA) Scalable fiber optic DAQ (TCP/IP or SSP) Tessellated (common HV, LV and optical fiber)

Constant threshold discrimination 1 ns FPGA timestamp (clock distribution driven)

Applications:

- CLAS12 RICH
- EIC R&D
- Gluex DIRC
- SOLID
- Medical Imaging
- Homeland Security

SSP Back-end

Contalbrigo M.

Modular RICH @ EIC

Fresnel lens focusing aerogel detector concept

- EIC mRICH designed for K/ pi ID up to 9 GeV/c
- **BELLE-2 ARICH** aims to ٠ separate pion and kaon up to 4 GeV/c

- 9 GeV/c pion beam launched at the center of xy plane in simulation
- Smaller and thinner ring

mRICH @ EIC

≥ $3\sigma \pi/k$ separation ~ 2 ÷ 10 GeV/c

Compact and modular RICH independent elements

Two completed mRICH prototypes

Contalbrigo M.

QEIC, 6th January 2020, IIT Bombay - India

mRICH @ EIC

Preliminary results of the mRICH prototype test beam

Dual RICH @ EIC

Dual-Radiator RICH within eRD14 - PID

- GOAL: Discriminate Hadrons in 3 to 50 GeV/c
 - need to operate in magnetic field
- Proposed configuration fitting the spectrometer constraints (evaluated by detailed GEANT4 simulations)
 - -- dual radiator RICH: aerogel and C_xF_y gas -- focusing mirror

-- 6 open sectors

 $z^{\circ} 10^{2}$ $z^{\circ} 10^{2}$ 10° 20° 30° 40° 50° 60° 70° momentum [GeV/c]

dRICH Simulated Performance

dRICH Prototype Design

Commercial vacuum technology for safety and cost effectiveness Overlapping rings for parallel beam particles

dRICH Prototype Performance

Montecarlo simulation

1 p.e. Error (mrad)	Aerogel	@EIC	C ₂ F ₆ Gas	@EIC
Chromatic error	3.2	(2.9)	0.51	(0.8)
Emission	0.5	(0.5)	0.5	(1.2)
Pixel	2.5	(0.5)	0.42	(0.5)

EIC Detector Environment

Sensor and Readout

Readout Independent element for flexibility: supports various detectors with integrated cooling

Reference:

MAROC (Discriminator) + SSP/VSX (VME)

Dedicated:

SiREAD (Sampling) + SSP/Ethernet

Sensors Reference MA-PMTs

B-field tolerant MCP-PMTs (LAPPDs) + Robust/Compact/Cost-effective: SiPMs

Contalbrigo M.

SiPM Radiation Tolerance

T. Tsang et al. JINST 11 (2016) P12002

I. Balossino et al. NIMA 876 (2017) 89

S12572 standard technology S13360 trench technology

T= 0 C few 10⁹ n_{eq} cm²

M. Calvi et al. NIMA 922 (2019) 243

SiPM: Hamamatsu S13360-1350CS (50 µm cells) Temperature: –30 °C

 $\geq 10^{11} \, n_{eq} \, cm^2$

T= 25 C 10⁹ n_{eq} cm² Annealing at 250 °C

Contalbrigo M.

QEIC, 6th January 2020, IIT Bombay - India

SiPM Option

Viable solution with cooling

Test of SiPM with RICH electronics

Conclusions

The last decade provided many evidences that correlation of partonic transverse degrees of freedom in the nucleon do exist and manifest in hadronic interactions

Next step: Moving from phenomenology to rigorous treatment (predictive power)

Hadron identification provides access to the peculiar flavor dynamics within the QCD complex and rich confined world

New data coming from SIDIS, DY, e+e- and pp reactions should allow to:

- Constrain models in the valence region
- Test factorization, universality and evolution
- Study higher twist effects
- Investigate non-perturbative to perturbative transition (along P_T)
- Flavor separation via proton and deuteron targets and hadron ID
- Test of Lattice QCD calculations