INFN Groups and eRD14

RICH Components

Aeronautic technology for structure

to maximize lightness and stiffness. Trapezoid of composite materials: CFRP inside acceptance, Aluminum outside

Carbon Fiber Mirrors (spherical)

to maximize lightness and stiffness. Consolidate technology (HERMES, AMS, LHCb) but ~ 30 % material budget reduction

RICH Components

Glass-Skin Mirrors (planar)

Innovative technology never used in nuclear experiments.1.5 mm outside, 0.7 mm inside acceptance~ 1/5 cost for squared meter vs CFRP

Large refractive index aerogel radiator Tiles up to 20x20x3 cm² at n=1.05.

Photo-sensor: MA-PMT

80 H8500 + 350 H12700

< 1 cm spatial resolution < 1 ns time resolution Compatible with the low torus fringe field

Average MA-PMT gain $\sim 2.7 \ 10^6$ Corresponds to SPE $\sim 400 \ fC$

- 64 6x6 mm² pixels cost effective device
- / High sensitivity on VIS towards UV light
- Mature and reliable technology
- ✓ Large Area (5x5 cm²)
- High packing density (89 %)
- Fast response
- Expensive technology

Photo-sensor: SiPM

SiPMs

- Mass production technology
- Photon counting
- Excellent time resolution
- Compatible with magnetic field
- ✓ High dark rate
- Low radiation tolerance

Photo-sensor: SiPM

Neutrons produced isotropically through d(230keV) t \rightarrow n α α particles measured to monitor the intensity

- max flux 10^{11} s⁻¹ in 4π
- max neutron energy 14.6 MeV

Single-photon capability after irradiation ?

S12572 standard technology S13360 trench technology

Modular Readout Electronics

Compact (matches sensor area) Modular Front-End (Mechanical adapter, ASIC, FPGA) Scalable fiber optic DAQ (TCP/IP or SSP) Tessellated (common HV, LV and optical fiber)

Constant threshold discrimination 1 ns FPGA timestamp (clock distribution driven)

Applications:

- CLAS12 RICH
- EIC R&D
- Gluex DIRC
- SOLID
- Medical Imaging
- Homeland Security

SSP Back-end

Front-End Electronics

Analog: Charge (1 fC) Digital: Time (1 ns)

Trigger latency (8 µs)

Optical ethernet (2.5 Gbps)

Trigger: external internal self

On-board pulser

Linear response

Multiplexed readout Limited holding time delays

Used for calibrations

ADC Charge Measurement

Multiplexed readout up to 50 kHz

High resolution SPE spectrum

Viable for efficiency and gain monitors

In conjunction with timing, allows the study of PMT discharge and cross-talk

Front-End Electronics

Analog: Charge (1 fC) Digital: Time (1 ns)

Trigger latency (8 µs)

Optical ethernet (2.5 Gbps)

Trigger: external internal self

On-board pulser

Digital response Working in saturated regime 64 parallel channel readout

8 μs FIFO and delays 1 ns time resolution

TDC Digital Readout

During Acceptance tests

During Internal Pulser Calibration

Pedestal rms as seen by a test-point

As seen by RICH readout

Discrimination down to 20 fC, i.e. few % of SPE, allows sensor characterization

Optical and Electronics Cross-Talk

Contalbrigo M.

EIC R&D, 30 Jan 2020, Bologna

Single Photon Discrimination

EIC R&D, 30 Jan 2020, Bologna

Hadron Identification @ EIC

eRD14 Consortium: An integrated program for particle identification at a future EIC detector

h-endcap: A RICH with two radiators (gas+aerogel)p/k separation up to ~ 50 GeV/cdRICH

e-endcap: A compact and projective aerogel RICHp/k separation up to ~ 10 GeV/c mRICH

TOF: possible to cover lower momenta

Photosensors & electronics: parallel development to match the needs of the next generation devices

E-endcap mRICH @ EIC

Fresnel lens focusing aerogel detector concept

- EIC mRICH designed for K/ pi ID up to 9 GeV/c
- BELLE-2 ARICH aims to separate pion and kaon up to 4 GeV/c

E-endcap mRICH @ EIC

≥3σ π/k separation ~ 2 ÷ 10 GeV/c

Compact and modular RICH independent elements

Two completed mRICH prototypes

Contalbrigo M.

EIC R&D, 30 Jan 2020, Bologna

H-endcap dRICH @ EIC

Extended momentum range

Proposed configuration fitting the spectrometer constraints (evaluated by detailed GEANT4 simulations)

- -- dual radiator RICH: aerogel and $C_x F_y$ gas
- -- focusing mirror
- -- 6 open sectors
- -- curved detector surface

Dual Radiator RICHes

dRICH Prototype Design

Commercial vacuum technology for safety and cost effectiveness Overlapping rings for parallel beam particles

dRICH Prototype Performance

Montecarlo simulation

1 p.e. Error (mrad)	Aerogel	@EIC	C ₂ F ₆ Gas	@EIC
Chromatic error	3.2	(2.9)	0.51	(0.8)
Emission	0.5	(0.5)	0.5	(1.2)
Pixel	2.5	(0.5)	0.42	(0.5)

EIC Detector Environment

EIC R&D, 30 Jan 2020, Bologna

Sensor and Readout

Readout Independent element for flexibility: supports various detectors with possible integrated cooling and streaming readout

Reference:

MAROC (Discriminator) + SSP/VSX (VME)

Dedicated:

```
SiREAD (Sampling) + SSP/Ethernet
```


Sensors Reference MA-PMTs

B-field MCP-P

B-field tolerant MCP-PMTs (LAPPDs) + Robust/Compact/Cost-effective: SiPMs

SiPM Radiation Tolerance

T. Tsang et al. JINST 11 (2016) P12002

I. Balossino et al. NIMA 876 (2017) 89

S12572 standard technology S13360 trench technology

T= 0 C few 10⁹ n_{eq} cm²

M. Calvi et al. NIMA 922 (2019) 243

SiPM: Hamamatsu S13360-1350CS (50 µm cells) Temperature: –30 °C

 $\geq 10^{11} \, n_{eg}^{2} \, cm^{2}$

Contalbrigo M.

 $10^9 n_{eq} \text{ cm}^2$

Annealing at 250 °C

T= 25 C

EIC R&D, 30 Jan 2020, Bologna

SiPM Option

Viable solution with cooling

Test of SiPM with RICH electronics

SiPM Signal Discrimination

SiPM Radiation Tolerance Investigation

1E+13

RICH Back-End Electronics

Optical ethernet (2.5 Gbps)

Small setups: TCP/IP Optical bridge / PC Desktop

Full experiment: SSP protocol SSP board / VSX crate

Next: Ethernet Switches

Optical bridge / PC Desktop Few FPGA units ~ 500 channels

SSP board / VSX crate 2 RICH sectors ~ 50 k channels

Pulsed Laser Test Benches

Detailed characterization Sensors: gain, efficiency, cross-talk, radiation tolerance Electronics: gain, cross-talk, thresholds, time resolution

JLab

632 nm picosecond pulsed laser light Light diffuser to illuminate the whole MAPMT surface Standardized system with CLAS12 electronics H8500 6x6 mm² pixel sensor so far

INFN

632 nm and 407 nm picosecond pulsed laser light Light concentrator to scan the sensor surface Flexible layout supporting various sensors and Front-End electronics

Aerogel Test Laboratory

Existing facility to study detailed aerogel optical properties (refractive index, surface planarity, forward scattering) safe handling and Interplay with gas radiator

Controlled storage

Characterization station

Mirror Test Laboratory

Existing facility to study detailed mirror optical properties (surface map, radius of curvature, reflectivity)

CLAS12 RICH Prototype @ CERN T9

ADC Channels

1000

500

1500

2000

Goal: Separation up to 8 GeV/c

mRICH Prototype @ Fermilab BTF

120 GeV/c proton

120 GeV proton pencil beam

1-100 GeV hadron wide beam

2016 and 2018 test beams

eRD14 Electronics

Readout Electronics Development

Goal:

- Develop an integrated suite of readout electronics for the different photosensors used for all the Cherenkov detectors and prototypes.
- Provide a reference readout system for prototypes performance assessment
- Developed a generic DAQ system compatible with the Consortium needs
- Test applications with various sensors (including SiPMs)

FY 20 Activities:

- Moving from the TARGETX (Belle-II) to the new SiREAD chip
- Development of pulsed laser test benches for detailed characterization

Siread

Photograph of the first generation of 256-anode 2" PMT readout for use with mRICH prototype in the Fermilab beam test facility.

MA PMT Readout

Photograph of the 64 channel SiREAD based (2x SiREAD rev.1) readout card as a building block for the 256 MA-PMT readout.

Siread

SiREAD Performance

 Micrograph of the fabricated prototype SiREAD (top left). Prototype SiREAD on the evaluation PCB (top middle). Superimposed dark count waveforms recorded from a SiPM using the SiREAD operating at 1 Gsa/s (right). High channel count evaluation PCB for SiREAD with 32 dedicated MMCX connectors (bottom left).

Contalbrigo M.

Spares

New Radiator Materials (eRD6-SBU)

Aim: find radiator medium that combines properties of gas and aerogel

Method: use anisotropic media (meta-materials) to produce small forward F=1.0005 and large transverse G=10 optical stretch factors

Transformation optics yield:

$$\tan(\alpha_{\rm PH}) = \frac{k_y}{k_x} = \frac{G}{F} \frac{\sqrt{F^2 \epsilon_b \omega^2 / c^2 - k_x^2}}{k_x} = \frac{G}{F} \tan(\alpha^*)$$

New Photocathode Materials (eRD6-INFN)

Aim: robust alternative to CsI for gaseous detectors

Method: Hydrogenate diamond film obtained with spray technique using nano powders

To be matched with a

windowless thick GEM-MicroMegas hybrid gaseous detector with miniaturized pad size

