

Electron-Ion Collider forward RICH R&D on SiPM and Aerogel

Marco Contalbrigo – INFN Ferrara

Incontro ALICE-EIC - 23th July 2021

Contalbrigo M.

Incontro ALICE-EIC 23th July 2021

EIC Timeline

EIC Accelerator

ATHENA Detector

Based on new 3T Magnet (as assumed by ATHENA)

INFN is concentrating on the forwad RICH PID of the EIC asymmetric detector

INFN is concentrating on the forwad RICH PID of the EIC asymmetric detector

R&D for photo-sensors: single-photon sensitivity in high-magnetic field

Silicon photomultipliers

LAPPD (cost-effective microchannel plate detectors) sensor

Windowless micro-pattern gaseous detector (MPGD

R&D for aerogel section:

High transparency aerogel at low refractive index (n=1.02) Also in collaboration with EIC mRICH (n=1.03) and INFN TRICK (n=1.045)

R&D for gaseous section:

High-pressure Argon as alternative to greenhouse gases

INFN Groups

DARKSIDE SiPM

INFN RM1 HERMES/Hall-A RICH **INFN CT/LNS** Hall-A HCAL

Enriched INFN expertise and manpower to support dRICH & SiPM program

CLAS12 RICH

COMPASS RICH Gaseous DET (eRD6)

M. Contalbrigo

Incontro ALICE-EIC, 23th July 2021

EIC Detector Challenge I

Wide momentum coverage 3 - 60 GeV/c

dRICH: effective solution, part of reference detector

Radiators:Aerogel $(n_{AERO} \sim 1.02) + Gas (n_{C2F6} \sim 1.0008)$ Detector: $0.5 \text{ m}^2/\text{sector}$, $3x3 \text{ mm}^2$ pixelSingle-photon detection in ~1T magnetic fieldOutside acceptance, reduced constraints

ightarrow best candidate for SiPM option

Phase Space:

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c

Russia: Budker Institute of Novosibirsk (RAS Siberian branch)

- pros: largest volume (bricks) highest transparency at large refractive index (n=1.05) wide experience from HERMES, AMS, CLAS12, LHCb
- cons: hygroscopic essentially handmade

Japan: Aerogel Factory Co. (spinoff from Chiba University)

- pros: hydrophobic with industrial partners wide experience from BELLE-II
- cons: to be validated for massive production

USA: ASPEN (collaborating with CUA)

- pros: industrial producer
- cons: to be validated for transparency

Aerogel Test Laboratory

Existing facility to study detailed aerogel optical properties (refractive index, surface planarity, forward scattering) safe handling and Interplay with gas radiator

Spectrophotometer

Characterization station

Controlled storage

M. Contalbrigo

Aerogel Surface Mapping

M. Contalbrigo et al, NIMA 876 (2017) 168

Mirror Test Laboratory

Existing facility to study detailed mirror optical properties (surface map, radius of curvature, reflectivity)

dRICH Prototype

Goals:

- Study dual radiator performance and interplay
- Study specifications and alternatives for optical components
- Test alternate single-photon detection systems
- * First test-beams in September and October '21 at CERN (in synergy with ALICE at PS T10)

dRICH Imaging

House the same principles and readout units used for EIC eRD14 test-beams Compatible with H13700/S12642-1616PA + CLAS12 RICH MAROC front-end Allows to study the working principles and optical performance of the components

M. Contalbrigo

EIC Detector Challenge II

High Magnetic Field

~ **1 T order** of magnitude, varying orientation

SiPM: PET study up to 7 T 10.1109/NSSMIC.2008.4774097

dRICH sensor location relaxes requirements on neutron dose and material budget

Neutron Fluence

Moderate except for very forward regions

Reference value. $\sim 10^{11} n_{eq}/cm^2$ for several years at max lumi (10³⁴)

SiPM: radiation mitigation for SPE actively studied till 10¹¹ n_{eq}/cm² and above 10.1016/j.nima.2019.01.013 10.1016/j.nima.2018.10.191

SiPM Program

Enriched INFN manpower and expertise towards a comprehensive program of post-irradiation SiPM + electronics single photon detection assessment.

Done so far, use few SiPM samples for the study of

- Cherenkov application prior of irradiation
- Single photon counting vs dose and temperature

Short term goal (~ 1 year):

- Characterize irradiated status-of-the-art SiPM candidates
- Exploit in-house dedicated electronics (ToT based, for cooled SiPM + annealing)
- Cherenkov imaging after EIC-like irradiation (proof-of-principle)

Long term plan (~2-3 years):

- Systematic study towards performance optimization
- SiPM engineering with producers
- Temperature treatment protocols vs radiation
- Assess discriminating vs sampling readout performance
- Development of an optimized streaming readout

Key: Temperature treatment & dedicated readout

CERN 2012

Fermilab 2018

Survey of SiPM Candidates

Look for status-of-the-art 3x3 mm² SiPM Hamamatsu (a sort of reference), Broadcom/FBK (INFN partner in Italy),

supplier	model	type	pixel (mm)	cell (um)	mount / connector	window	PDE (%) peak	DCR (kHz/mm2)	PDE / DCR	package fill factor (%)	x-talk (%)	after- pulse (%)	Vop (V)	CTR (ps)	rise time (ps)
Ketek	PM3325-WB-D0	single	3	25	smt	dass	45	125	0.36	82	26	5	30	70	110
Ketek	PM3315-WB-C0	single	3	15	smt	glass	31	125	0.25	82	18	5	30		630
Ketek	PA3325-WB-0404	4x4	3	25	Samtec	glass	45	125	0.36	80	26	5	30		110
Hamamatsu	S13360-3025CS	single	3	25	ceramic	silicone	25	45	0.56	23	1		60		
Hamamatsu	S13360-3025PE	single	3	25	smt	epoxy	25	45	0.56	54	1		60		
Hamamatsu	S13360-3050CS	single	3	50	ceramic	silicone	40	55	0.73	23	3		60		
Hamamatsu	S13360-3025PE	single	3	50	smt	epoxy	40	55	0.73	54	3		60		
Hamamatsu	S13360-3050VE	single	3	50	smt	epoxy	40	55	0.73	78	3		60		
Hamamatsu	S13361-3050NE-04	4x4	3	50	smt	ероху	40	55	0.73	85	3		60		
Hamamatsu	S14160-3050HS	single	3	50	smt	silicone	50	165	0.30	78	7		40	60	
Hamamatsu	S14161-3050HS-04	4x4	3	50	smt	silicone	50	165	0.30	85	7		40	60	
Hamamatsu	<u>S14160-3015PS</u>	single	3	15	smt	silicone	32	78	0.41	54	< 1		45		
Hamamatsu	S13362-3050DG	single	3	50	metal	glass	40	25	1.60	4	3		55		
SensL	C-Series 30050	single	3	50	smt	compound	35	33	1.06	56	10	0.6	25		600
SensL	ARRAYC-30035-16P-PCB	4x4	3	35	Hirose	compound	31	33	0.94	56	7	0.2	25		600
SensL	J-Series 30035	single	3	35	smt	glass	38	50	0.76	94	8	0.75	25		90
SensL	J-Series 30020	single	3	20	smt	glass	30	50	0.60						
SensL	ARRAYJ-30035-16P-PCB	4x4	3	35	Hirose	glass	38	50	0.76	86	8	0.75	25		90
AdvanSid	ASD-NUV3S-P		3	40		ероху	43	100	0.43	65		4	26		
Broadcom	AFBR-SGN33C013	single	3	30	smt	glass	54	255	0.21	91		1	10		
Broadcom	AFBR-S4N44P163	4x4	3	30	smt	glass	55	255	0.22	92		1	10		
Broadcom	AFBR-S4N44C013	single	3.72	30	smt	glass	55	270	0.20	92					

M. Contalbrigo

SiPM Selection

STAGE-I: Assess performance of 3x3 mm² SiPM status-of-the-art selection

- (2x) OnSemiconductor microFJ-30020 and -30035
- (1x) Broadcom AFBR-S4N33C013
- (2x) Hamamatsu.
 S13360-3050VS and -3025VS
- (2x) Hamamatsu. S14160-3050HS and -3015PS
- (1x) FBK

custom SIPM samples

Organized in matrices for irradiation and imaging tests

Test-board for lab characterization

SiPM Characterization

SiPM characterization vs temperature, pre- and post-irradiation

M. Contalbrigo

SiPM Carrier

Organize groups of SiPM in 4x8 customized matrices, each group with

- alternative designs (microcell size, quench resistor, wavelength range, ...)

Use available facilities in Italy (protons: TIFPA, LNS neutrons: ENEA,)

Designed to be used for irradiation tests and at test-beams after irradiation

SiPM Irradiation @ TIFPA

SiPM Irradition test

1st campaign May '21 @ TIFPA (Italy)

Collimated proton beam

 $10^8 - 10^{11} n_{eq}$ fluence

Goal:

Study damage effects with increasing dose

TIFPA Facility at Trento Hadron Therapy Center

Assess post-irradiation and post-annealing single-photon detection capability

4x samples of S14160-3050 irradiation at various 1MeV neutron equivalent dose

M. Contalbrigo

Incontro ALICE-EIC, 23th July 2021

SiPM Radiation Damage

1 month annealing at ncresing temperarture from 50 to 170 C, check-up every few days

Oven 50:1100 C

Climatic Chamber -40:80 C

SiPM Annealing

FBK SiPM [NUV-HD-RH

after 1 week of annealing at 125 C

annealing reduced dark current by a factor of ~5-10, in line with expectations

SiPM irradiated up to 10¹¹ now behave like if they were irradiated by 10¹⁰

SiPM R&D

Custom SiPM solutions:

exploit INFN conventions with producers e.g. FBK (development) and Lfundy (production)

FBK: 15 μm and 50 μm SPAD sample

Questione finestre. Sinergia con LHCb

SiPM Radiation Tolerance

General trend is that SiPMs with high VB value have faster dark current reduction with the temperature

Yu. Musienko @ DIRC2019

+

Readout Electronics R&D

Custom readout solutions:

ToT readout bsed on ALCOR (F/E) + ARCADIA (DAQ)

- > 500 kHz per channel
- > 50 ps time binning

ALCOR test board

SiPM carrier to ALCOR adapter board

FPGA!

Cherenkov imaging test with dRICH prototype. (starting in fall '21)

Study signal over background ratio as a function of

irradiation + annealing, temperature, timing

- SiPM carriers with
 - pristine SiPM
 - irradiated and annealed SiPM
- dedicated readout:

ALCOR front-end ARCADIA DAQ

CERN Test-beam

dRICH + SiPM beam test October '21 @ CERN T10

Meson beam up to 15 GeV/c

Synergy with ALICE for Japanese (Chiba U.) aerogel test

Goal:Validate dRICH Concept Assess SiPM usage in realistic experimental conditions

Conclusions