Dual Radiator RICH in EIC Hadron-endcap

Radiators: Aerogel ($\mathrm{n}_{\text {AERO }} \sim 1.02$) $+\operatorname{Gas}\left(\mathrm{n}_{\text {C2F6 }} \sim 1.0008\right)$
Detector: $0.5 \mathrm{~m}^{2} /$ sector , $3 \times 3 \mathrm{~mm}^{2}$ pixel Single-photon detection in $\sim 1 T$ magnetic field Outside acceptance, reduced constraints
\rightarrow best candidate for SiPM option

Phase Space:

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c

Compact and cost-effective solution for continuous momentum coverage ($3-60 \mathrm{GeV} / \mathrm{c}$) Strong interest in the dRICH electron-pion separation capability

Studied with full Geant4 simulation, with Bayesian optimization and analytic parameterizations

L. Barion et al., JINST 15 (2020) 02, C02040
E. Cisbani et al., JINST 15 (2020) 05, P05009

Dual radiator imaging
Pressure vessel for gas \& n tune Sensor \& readout friendly

SiPM Program

SiPM: sampled for vendor, type and dose (at groups of 4) organized in 8×4 matrices for imaging to be irradiated up to $10^{11} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$

ALCOR: ASICS under development at INFN:
ToT architecture for cryogenic application 32 channels, 50 ps TDC, >500 kHz/channel

Readout: bias distributors and signal pre-conditioning compatible with temperature treatments, laboratory characterization, and firefly high-data rate DAQ

Laboratory characterization

Readout test with ALCOR chip

SiPM Carrier F

Imaging test with dRICH prototype

