

UNIVERSITÀ DEGLI STUDI DI FERRARA Dipartimento di Fisica e Scienze della Terra Corso di Laurea in Scienze geologiche

Modellazione dei geoneutrini prodotti dalla crosta superiore nell'intorno del detector SNO+ (Canada)

Relatore: Dott. Mantovani Fabio

Correlatrice: Dott.ssa Strati Virginia

Anno Accademico 2017/2018

Laureanda: Gizzi Sara

SOMMARIO

- Cosa sono i geoneutrini?
- Quanta radioattività è contenuta nella Terra?
- Come si misurano i geoneutrini nel detector SNO+ (Canada)?
- Inquadramento delle principali strutture geologiche che circondano SNO+
- Studio del segnale di geoneutrini in SNO+: modello analitico e modello 3D
- Conclusioni e prospettive

COSA SONO I GEONEUTRINI?

 I geoneutrini sono antineutrini prodotti dalla radioattività naturale terrestre, in particolare dai decadimenti β⁻ inclusi nelle catene di decadimento di ²³⁸U e ²³²Th e dal decadimento β⁻ di ⁴⁰K

QUANTA RADIOATTIVITA' C'E' NELLA TERRA?

- La composizione chimica globale della Terra è basata su argomentazioni cosmochimiche, misure indirette e alcune misure dirette su campioni di crosta e mantello superiore.
- La teoria Bulk Silicate Earth (BSE) è un paradigma che descrive il Mantello Primitivo sulla base di osservazioni composizionali su campioni condritici e terrestri

 Importanti implicazioni sul contributo radiogenico al calore terrestre

Possibilità di discriminare i modelli BSE in base		Modello	M(U) (10 ¹⁷ kg)	H(U) (10 ¹² W)	S (TNU)
		Anderson, 2007	0.8	8.0	10.7-16.2
	alle misure	Palme and O'Neil, 2003	0.9	3.4	7.0-11.3
spe	sperimentali di	McDonough and Sun, 1995	0.8	8.0	5.8-9.9
	geoneutrini	Lyubetskaya and Korenga, 2007	1.1	10.3	4.0-8.2
Sconcatin		Javoy et al., 2010	0.5	4.8	1.0-3.4

COME SI MISURANO I GEONEUTRINI IN SNO+

- Kamland (Giappone) e Borexino (Italia) acquisiscono dati da oltre 10 anni. Nel 2018 entrerà in funzione anche SNO+
- SNO+ è un rivelatore a scintillazione costituito da una sfera acrilica riempita da 1000 Ton di liquido scintillatore ultrapuro e circondata da 9300 fotomoltiplicatori
- Il **flusso di geoneutrini** in superficie è di ~10⁶ cm⁻²s⁻¹
- Il segnale di geoneutrini si misura in TNU (Terrestrial Neutrino Unit) 1TNU=1antineutrino/1anno/10³² protoni
- Il flusso di geoneutrini dipende fortemente dalla presenza di **U e Th** nelle strutture
 geologiche che circondano il detector

LA GEOLOGIA ATTORNO A SNO+

- SNO+ si trova nel Cratone Canadese, presso Sudbury (Ontario), in una miniera attiva che estrae prevalentemente nichel e rame
- Il cratere meteorico (1.85 Ga) ha una forma ellittica (lunga ~ 58 km e larga ~ 28 km) a causa delle deformazioni dovute alle orogenesi successive all'impatto. Contiene noriti, quarzogabbri e granofiri.
- Area di studio: cilindro di raggio e altezza di 5 km intorno a SNO+ che comprende 3 reservoir geologici

50×50 km

GEOLOGIA E GEOCHIMICA DELL'AREA DI STUDIO

Reservoir	N. campioni	ρ (g/cm³)	<i>a</i> (U) (ppm)	<i>a</i> (Th) (ppm)
NG	108	2.83±0.10	$1.2\substack{+0.6 \\ -0.4}$	$5.9^{+2.1}_{-1.6}$
н	51	2.75±0.04	$2.3^{+4.0}_{-1.5}$	$8.0^{+15.3}_{-5.3}$
GN	35	2.70±0.10	3.3±0.3	15±1.5

Granofiri (GN) e gabbro-noriti (NG)

 [1.85 Ga]: costituiscono la massa
 principale del Sudbury Igneous
 Complex, che si formò dal
 raffreddamento del fuso generato
 dall'impatto del meteorite

 Huronian Supergroup e Intrusioni minori (HI) [2.45-2.22 Ga]: complessa successione di rocce sedimentarie clastiche e vulcaniche hanno subito metamorfismo di basso grado, contenenti intrusioni mafiche e

felsiche

* Strati, V., et al. "Perceiving the crust in 3D: a model integrating geological, geochemical, and geophysical data." Submitted to Geochem. Geophys. Geosyst.

MODELLO ANALITICO PER SNO+ IN SUPERFICIE

- E' stato stimato il segnale di geoneutrini generato dal cilindro centrato in SNO+ di raggio e altezza di 5 km costruendo un **modello analitico** con valori omogenei di abbondanza di U (a_U =2.2 ppm) e Th (a_{Th} =8.3 ppm) e di densità (ρ =2.76 g/cm³)
 - Il flusso di geoneutrini prodotto da un cilindro omogeneo di raggio r e profondità h, sulla cui base si trova centrato SNO+, è dato da:

h II

EFFETTO DOVUTO ALLA COPERTURA DEL DETECTOR

 Il segnale cumulativo (somma dei contributi locali) aumenta all'aumentare della distanza da SNO+

Dal confronto tra il segnale cumulativo generato dal cilindro per SNO+ posto a -1782 metri s.l.m. con quello per SNO+ a 0 m s.l.m. risulta che la copertura rocciosa del detector provoca un innalzamento del segnale di ~1 TNU (~3% del segnale crostale)

	S (TNU)	S/S _{crosta} (%)
0 m s.l.m.	1.89	6.0
- 1782 m s.l.m.	2.83	9.1

CONTRIBUTO PARZIALE DEL MODELLO 3D

NG, HI e GN contribuiscono in misura diversa al segnale locale in funzione di:

- densità
- abbondanza di U e Th
- volume occupato nel cilindro
- posizione rispetto a SNO+

Utilizzando un **modello geologico 3D**, sono stati stimati per ciascuno dei tre reservoir i **contributi parziali** al segnale totale prodotto dal cilindro.

CONFRONTO TRA MODELLI: SNO+ IN PROFONDITA'

CONCLUSIONI E PROSPETTIVE

- Ho costruito un modello analitico di forma cilindrica con abbondanze e densità omogenee al fine di calcolare il segnale di geoneutrini atteso a SNO+
- I segnali di geoneutrini a SNO+ calcolati per due diversi modelli (analitico e 3D geologico) sono in accordo a livello di ~ 10%
- Collocare il detector alla profondità corretta (-1782 s.l.m.) produce un incremento del segnale di ~ 1.3 TNU
- Il segnale generato dalla copertura contribuisce in maniera non trascurabile al segnale totale ed è comparabile al segnale complessivo del mantello riportato in alcuni modelli BSE.

	S _{Crust} (TNU)	S _{Mantle} (TNU)
Anderson, 2007		10.7 - 16.2
McDonough and Sun, 1995	31.6	5.8 - 9.9
Javoy et al., 2010		1.0 - 3.4

		S [TNU]	
	со		
	SNO+ in superficie	1. 9	
h=5	SNO+ in profondità	2.8	
â	∆ [TNU]	0.9	
	Modello 3D		
	SNO+ in superficie	1.7	
	SNO+ in profondità	3.0	
1.	Δ [ΤΝU]	1.3	

Grazie per l'attenzione

1.8

(2)

Slide di back up

CONFRONTO TRA MODELLI: SNO+ IN SUPERFICIE

 Per SNO+ in superficie il segnale generato da tutto il cilindro stimato con il modello analitico è maggiore di quello del modello 3D soprattutto a causa della vicinanza del reservoir NG

	S(U+Th) [TNU]	Abbondanza di U [ppm]
Modello analitico	1.89	<a> = 2.2
Modello 3D	1.66	$a_{NG} = 1.2$ $a_{HI} = 2.3$ $a_{GN} = 3.3$

