L'impiego della spettroscopia ad impedenza per lo studio del contenuto idrico e di ghiaccio nei suoli: messa a punto di una strumentazione prototipale e di una metodologia d'acquisizione

Relatore: Prof. Fabio Mantovani

Correlatore: Prof. Marco Bittelli DECAGON DEVICES

ANNO ACCADEMICO: 2007/2008

Tesista: Giulia Ricciardi

Summary

- Il contenuto di ghiaccio nei suoli: implicazioni geotecniche e climatiche su scala globale
- Concetti fisici di base: la permettività dielettrica e la spettroscopia ad impedenza
- Strumentazione utilizzata: lo spettrometro ad impedenza,la camera termica, la termocoppia
- Preparazione dei campioni ed esecuzione delle misure
- Risultati delle misure
- Il Dielectric Mixing Model: verso una stima del C_W (contenuto idrico) e C_{ice} (contenuto di ghiaccio)
- Conclusioni e prospettive

Il contenuto di ghiaccio nei suoli: il permafrost

- Il 24% delle terre emerse nell'emisfero settentrionale sono coperte da permafrost.
- Lo scioglimento del permafrost, che contiene circa 900 gigatonnellate di carbonio organico, libererebbe metano e biossido di carbonio con effetti climatici dirompenti su scala globale

Effects of thermokarst on a railway track. Photo: US Geological Survey Se tutto il carbonio organico venisse liberato sottoforma di CO₂, si libererebbe una quantità di CO₂ pari a quella emessa da 200.000 centrali a carbone da 1GW in un anno.

tinuous permafrost % area coverage

Discontinuous/sporadic 10-90% coverage Isolated patches

Effetti dello scioglimento del suolo ghiacciato: instabilità delle strutture stradali

 I sensori termici posizionati nelle strade NON sono sufficienti per capire il C_{ice}.

 Necessità di una nuova strumentazione per misurare DIRETTAMENTE C_{ice} →DECAGON→BUSINESS

Processi di polarizzazione

Il comportamento dielettrico della materia dipende dalle strutture molecolari che la compongono:

Campo elettrico variabile nel tempo

Negli es<u>p</u>erimenti di spettroscopia ad impedenza il campo elettrico esterno E dipende dal tempo:

$$\overline{E}(\boldsymbol{\nu},\boldsymbol{x})$$

Real Dielectric Constant, $\boldsymbol{\mathcal{E}}'$ Water **Ion-Dipole** 80 Orientation H₂0 60 H_20 40 0²⁻ **Electronic Atomic** 20 lce 0 **10¹⁵ 10**³ 10⁹ **10**¹² **10⁶** Frequency, f (Hz)

La permettività dielettrica varia in funzione della frequenza: spettroscopia ad impedenza. Quest'approccio permette di distinguere i

diversi

meccanismi di polarizzazione.

La permettività complessa

In presenza di campi elettrici variabili nel tempo la permettività è una funzione complessa:

L'equazione di Debye

Un modello fisico semplificato è stato elaborato da Debye:

 au_D Tempo di rilassamento k_B Costante di Boltzmann η Viscosità T Temperatura

V Volume della molecola

Nelle ipotesi del modello di Debye, dal tempo di rilassamento possiamo ricavare informazioni circa la temperatura e la viscosità del materiale.

Cosa misuriamo? Capacità reale

VM#3 8B15.XLS

WM#3_8B15.XLS

Cosa misuriamo? Cole-Cole plot

Spettrometro ad impedenza: Wayne Kerr

- Misure in range di frequenza 20 Hz a 120 MHz
- Analysis Mode
- Ogni misura 100 data points
- Parametri misurati: Angolo di fase θ, Impedenza Z.
- Parametri derivati:
 - capacità reale C_r ,
 - capacità immaginaria C_i ,
 - tempo di rilassamento au.

Camera termica & termocoppia

- Misure eseguite a ~25°C, 15°C, 5°C, -5°C, -15°C, -25°C.
- Range di temperature camera termica +140°C -40°C.
- Termocoppia installata nel contenitore del campione.
- Gap temperatura camera termicalettura termocoppia = ~3°C.

Sonda

- La sonda funziona come un condensatore
- I due denti del probe sono le piastre di un condensatore
- Il mezzo che lo circonda è il materiale dielettrico
- Un campo elettromagnetico (EM) è prodotto tra le piastre positiva e negativa

Preparazione campioni

- Peso della sabbia e volume del contenitore campioni
- Misura della porosità delle sabbie
- Distribuzione omogenea contenuto idrico
- Utilizzo dello stesso quantitativo di sabbia per la preparazione dei campioni

Tipo di sabbia silicea	Granulometria	Porosità
SSF30	1 +	0.40
SSF50		0.38
SSF70	Ÿ -	0.37

Misure eseguite

 17 set di misura che comprendono 104 misure 			Sabbia	$C_{W}(5\%, 10\%, 15\%)$	Temperatura
Dor ogni tino di cobbio cilicoo				1370)	25
SSE30 SSE50 SSE70					15
Per ogni campione di acqua o			CCE20	Fissato	5
			55530		-5
Solo cobbio cilicoo SSE70					-15
					-25
Sabbia	Temperatura [°C]	Cicli di seccamento [minuti]	Mezzo	Concentrazione KCl (0, 1, 10 mM)	Temperatura [°C]
Sabbia	Temperatura [°C]	Cicli di seccamento [minuti] 1	Mezzo	Concentrazione KCl (0, 1, 10 mM)	Temperatura [°C] 25
Sabbia	Temperatura [°C]	Cicli di seccamento [minuti] 1 2	Mezzo	Concentrazione KCl (0, 1, 10 mM)	Temperatura [°C] 25 15
Sabbia	Temperatura [°C] Fissato	Cicli di seccamento [minuti] 1 2 5	Mezzo Acqua filtrata e	Concentrazione KCl (0, 1, 10 mM) Fissato	Temperatura [°C] 25 15 5
Sabbia SSF70	Temperatura [°C] Fissato	Cicli di seccamento [minuti] 1 2 5 10	Mezzo Acqua filtrata e distillata	Concentrazione KCl (0, 1, 10 mM) Fissato	Temperatura [°C] 25 15 5 -5
Sabbia SSF70	Temperatura [°C] Fissato	Cicli di seccamento [minuti] 1 2 5 10 20	Mezzo Acqua filtrata e distillata	Concentrazione KCl (0, 1, 10 mM) Fissato	Temperatura [°C] 25 15 15 5 -5 -15

Dielectric mixing model

- In un mezzo eterogeneo:
 - La permettività di un composto dipende dalle frazioni volumetriche delle componenti e dalle loro permettività pure
 - Il cambiamento di volume di un costituente cambia la permittività totale

w

S

S

S

Calcolo della costante dielettrica della matrice sabbiosa

 $\mathcal{E}_{mis} = f_{A}\mathcal{E}_{A} + f_{m}\mathcal{E}_{m}$

incognita

Calcolo della costante dielettrica delle sabbia silicee con 0% contenuto idrico.

Sostituiamo ad ε_r il valore misurato, le frazioni $f_A \in f_m$ risolviamo in funzione di $\varepsilon_{m.}$

Tipo di sabbia	Costante dielettrica della matrice sabbiosa \mathcal{E}_m (v = 10 MHz)
SSF30	3.30
SSF50	3.25
SSF70	2.90

2.5-3.5 permettività dielettrica delle sabbie silicee da bibliografia.

Dielectric mixing model con il parametro empirico α

- Materiali non omogenei (campioni di sabbia) \rightarrow parametro α che corregge l'equazione:
- se $\alpha = 1$ sistema perfettamente omogeneo
- se $\alpha \neq 1$ sistema è disomogeneo,

per la maggior parte dei suoli α = 0.5

$$\varepsilon_{mis}^{\alpha} = f_m \varepsilon_m^{\alpha} + f_A \varepsilon_A^{\alpha} + f_W \varepsilon_W^{\alpha}$$
$$\varepsilon_{mis}^{\alpha} = (1 - \phi) \varepsilon_m^{\alpha} + a \varepsilon_A^{\alpha} + \theta_V \varepsilon_W^{\alpha}$$

Tutti i parametri sono noti: da questa seconda fase di esperimenti possiamo stimare il parametro empirico α .

Studio del parametro a

Dal confronto della permettività dielettrica misurata e quella calcolata possiamo porre dei vincoli al parametro α

 Δ % esprime la differenza percentuale tra il valore misurato e quello calcolato della permittività dielettrica.

		SSF30		
Water content	T [°C]	ε mis. ε calc. Δ		Δ%
	25	2.02	2.16	6.3
5%	15	2.09	2.19	4.7
	5	2.11	2.21	4.7
10%	25	2.35	2.84	17.2
	15	2.51	2.92	13.9
	5	2.55	2.95	13.5
	25	3.20	3.52	9.1
15%	15	3.16	3.64	13.2
	5	3.13	3.69	15.1

$$\Delta\% = \left(\frac{\varepsilon_{calc} - \varepsilon_{mis}}{\varepsilon_{calc}}\right) *100$$

• $\varepsilon_{\rm calc}$ > $\varepsilon_{\rm mis}$: errore sistematico nella stima di $\varepsilon_{\rm calc}$ dovuto ad α

• Δ % < per campione con porosità minore (SSF70).

• Δ % > con contenuto idrico maggiore

•No trend con variazione temperatura

Calcolo delle frazioni volumetriche di ghiaccio

Valutazione dell'efficacia della spettroscopia ad impedenza per la misura del contenuto di ghiaccio dei suoli.

$$\varepsilon_{mis}^{\alpha} = \varepsilon_{m} \left(1 - \phi\right)^{\alpha} + \left(\phi - f_{Water}\right) + \left(f_{Water} - f_{Ice}\right)\varepsilon_{w}^{\alpha} + f_{Ice}\varepsilon_{Ice}^{\alpha}$$

$$A \qquad B \qquad C$$

Assunzione:

il modello non tiene conto dell'espansione volumetrica dell'acqua durante la formazione del ghiaccio, (~8%).

• Sostituendo i termini noti:

$$\varepsilon^{\alpha}_{mis} = A + B + C - 6.94 f_{Ice}$$

$$f_{Ice} = \frac{\varepsilon_{mis}^{\alpha} - (A + B + C)}{-6.94} = \text{frazione di ghiaccio}$$

Calcolo delle frazioni volumetriche di ghiaccio

Tipo di sabbia	Contenuto idrico	\mathcal{E}^{α} mis.	f_{Ice}	$f_{\scriptscriptstyle W}$	$f_{Ice}/f_{water}(\%)$	T = - 25° C
	5%	1.58	0.083	0.086	96	
SSF30	10%	1.67	0.168	0.173	97	
	15%	3.69	0.230	0.261	88 🔶	doll'occup procento i
	5%	1.6	0.077	0.082	93	tutti i compioni riculto
SSF50	10%	1.7	0.157	0.167	94	
	15%	1.9	0.225	0.252	89	essere gniacciata.
	5%	1.56	0.071	0.078	90	
SSF70	10%	1.67	0.148	0.162	91	
	15%	1.78	0.227	0.246	92	

Porosità è un fattore determinante per comprendere i fenomeni di ghiacciamento.

Da queste misure sulle sabbie, la spettroscopia ad impedenza risulta essere un approccio corretto per misurare il contenuto di ghiaccio: l'obiettivo è stato raggiunto!!!

Conclusioni e prospettive

- E' stata messa a punto una metodologia di misura sequenziale che permette di controllare i principali parametri fisici (porosità, T, C_w, massa...) e di rendere ripetibili le misure
- Sono stati riconosciuti nel range di frequenza considerato i principali meccanismi di polarizzazione (ion-dipole, orientation polarization)
- È studiato il parametro empirico α per il D.M.M. disomogeneo
- È stata misurata la costante dielettrica dei diverse matrici sabbiose ε_m e sono stati confrontati i risultati con il D.M.M.

La spettroscopia ad impedenza è risultata essere un metodo efficace per la determinazione delle frazioni volumetriche di acqua e ghiaccio presenti nei campioni di suolo analizzati

Prospettive: calibrazione del parametro α, perfezionamento del D.M.M., miglior controllo della porosità, miglior comprensione di fenomeni di polarizzazione, esperimenti su nuovi campioni...

Think like Scientists Work like Farmers Dream like Children...

to Outer Space

Introduction

Grazie per l'attenzione!!!

Meccanismi di polarizzazione

