Accelerator Aspects for SF Experiments at COSY/AD

Archil Garishvili (University of Erlangen) for the PAX collaboration

Central issue

Polarize antiprotons via Spin-Filtering of antiprotons by multiple passage through an internal polarized gas target

Polarization buildup of protons by spin filtering at COSY

Polarization buildup of antiprotons by spin filtering at AD

Outline

Low-Beta section at COSY

(spin-filtering of protons, commissioning of the setup)

Low-Beta section at AD

(spin-filtering of antiprotons)

- SC Quadrupole for Low-beta section
- Summary
- Low-Beta section at the AD (P. Beloshitskys proposal)
- Snake section at the AD

COoler SYnchrotron

ANKE/PAX Workshop

ANKE/PAX Workshop

Archil Garishvili

5

Low-Beta section @ COSY

COSY lattice

Beam envelope in cell region (COSY)

Antiproton Decelerator

BOW BOW	975080 005564	81740108 VVS0103 USV0205 USV0205	07 0F06930	COLORD WILL WILL WILL WILL WILL WILL WILL WIL	
		Circu	mference	182.4m	
	CLAVITS A	Max.	Momentum	3.57GeV/c	
	STREE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BY	Rigidi	τγ (Β ρ)	12.07 Tm	
DT145	0971208	Emitt	rance ε(x)	220 π mm mrad	
54309	04300	Emitt	rance ε(y)	190 π mm mrad	
	3	Max.	β (x)	17.8 m	
STAR	<u>s</u>	Max.	β (y)	21.4 m	
197 t		Min.	β (x,y)	2m	
83	E-cooler section				
	U-SCOPPOS U-STOP U-S		CBR 2506 BN 24 UV32607 UV UK2 2600 UVT 2500 LH2 2402 GR 26 6 QDN 25 (1) GFW 24 RN	UVT 2702 UVT 2702	
	Arabil Or	التربيط ماتير		0	

ANKE/PAX Workshop

Low-beta section @ AD

Low-beta section @ AD

ANKE/PAX Workshop

Beam envelope in low-beta section (AD)

Beam envelope in cell region (AD)

ANKE/PAX Workshop

AD(original) Vs AD(low-beta)

Original AD tunes:Qx=5.45, Qy=5.42AD tunes with low-beta:Qx=5.77, Qy=5.75

ANKE/PAX Workshop

SC Quadrupole

P. Beloshitskys proposal

Momentum GeV/c	3.57 - 0.6	0.6	0.6
Tunes: Qx / Qy	5.56 / 5.54	5.56 / 5.54	5.64 / 5.62
β× and βy at cell [m]	1.6 / 12.7	0.44 / 0.65	0.37 /0.43
R× and Ry at cell [mm]	18.9/49.1	1.48 / 1.80	1.36 /1.47

	3.57	0.6 (arrival)	0.6 (squeezed)
Quad 1 T/m	6.1	1.0	3.5
Quad 2 T/m	5.8	0.96	8.7
Quad 3 T/m	4.6	0.78	5.1
Quad 4 T/m	17.3	2.9	8.0
Quad 5 T/m	12.9	2.2	9.6
Quad 6 T/m	1.1	0.2	2.6
ANKE/PAX Workshop	Arch	il Garishvili	16

Snake section at the AD

Field of the solenoid $\chi = (1+G) / B\rho \cdot \int BdL$

Field of solenoid roughly 2 T at 500 MeV

Strength of solenoid $KS = \frac{B}{B\rho} \approx -0.56 \, m^{-2}$

ANKE/PAX Workshop

Summary

 Low-beta section can be realized at COSY as well as at the AD

• SC magnets do not affect the telescopic setup of the COSY straight section

• At the AD cell has to be opened by about 10 cm in vertical plane

Outlook

 For measuring longitudinal spin-dependent cross-section at the AD has to be installed Siberian snake

• Design of Siberian snake

 Optimization of the AD working point with inserted low-beta and snake sections