PIT for Spin Filtering Studies at COSY and AD

Alexander Nass

University of Erlangen-Nürnberg

Overview over the Target Section

Requirements for Spin Filtering

- # High polarization of the target
- **■** Density up to 10¹⁵ atoms/cm²
- **■** Variability of the direction of the spin axis
- Openable storage cell for AD
- **♯** Ability to produce electron and nuclear polarization separately
- ➡ Polarization measurement independent of the beam
- Ability to produce polarized H and D in short sequence with the same setup for filtering with D and measuring with H (no A_v for pd known)

Setup of the Polarized Target

- Production of a polarized atomic beam by an atomic beam source (ABS)
- Increase of the target density by means of an openable storage cell
- Analysis of target polarization by a so-called Breit-Rabi polarimeter (BRP) and a target gas analyzer (TGA)

Polarization of the Target Gas

Hydrogen states are defined as (|a>=|mS, mI>):

$$\begin{aligned} |1> &= | \frac{1}{2}, \frac{1}{2}> \\ |2> &= \cos \theta | \frac{1}{2}, -\frac{1}{2}> + \sin \theta | -\frac{1}{2}, \frac{1}{2}> \\ |3> &= | -\frac{1}{2}, -\frac{1}{2}> \\ |4> &= -\sin \theta | \frac{1}{2}, -\frac{1}{2}> + \cos \theta | -\frac{1}{2}, \frac{1}{2}> \end{aligned}$$
 with $\theta = \frac{1}{2} \arctan(B_C/B)$

Polarization:

$$P_{e} = n_{1} - n_{3} + (n_{2} - n_{4}) \cos 2\theta$$

$$P_{z} = n_{1} - n_{3} - (n_{2} - n_{4}) \cos 2\theta$$

The Atomic Beam Source

- ABS vacuum consists of 7 turbo molecular pumps with total pumping speed of ~10000 l/s
- Atomic beam is produced when the dissociated gas expands through a cooled nozzle into the vacuum
- Sextupole magnets produce electron polarization by focussing atoms in hyperfine states |1> and |2> and defocussing |3> and |4>
- High frequency transitions (HFT's) exchange populations of hyperfine states and are used to produce nuclear polarization
- HFT's will be tuned for H and D for filtering with D and beam polarization measurement with H

Running modes at COSY and AD

Gas	States after						Polarization in weak B		Polarization in strong B	
	Dissociator	1st 6-poles	SFT (D), MFT/WFT	2nd 6-poles	MFT/WFT, SFT (H)	P _e	P_{z}	$P_{\rm e}$	P _z	
Н	1> 2> 3> 4>	1> 2>	1> 3>	1>	1>	+1	+1	+1	+1	
Н	1> 2> 3> 4>	1> 2>	1> 2>	1> 2>	1> 2>	+1/2	+1/2	+1	0	
Н	1> 2> 3> 4>	1> 2>	1> 2>	1> 2>	1> 4>	+1/2	+1/2	0	+1	
Н	1> 2> 3> 4>	1> 2>	1> 2>	1> 2>	2> 3>	-1/2	-1/2	0	-1	
D	1> 2> 3> 4> 5> 6>	1> 2> 3>	1> 4> 6>	1>	1>	+1	+1	+1	+1	

Status of the Source

- ➡ Former HERMES ABS rebuilt with modified vacuum system (cryo pumps replaced by turbo-molecular pumps) on a new support
- New cabling and interlock system
- Vacuum system with the MW-dissociator is running
- ☐ Construction of a new analysis chamber whith QMS and compression tube
- First intensity measurements to be done soon

Control System

Performance of the new Vacuum System

	PIR 1 (mbar	PIR 2 (mbar	IG 1 (mbar)	IG 2 (mbar)	IG 3 (mbar)	IG 4 (mbar)	IG _{CT}
base pressure	3x10 ⁻⁴	1×10^{-3}	1.8x10 ⁻⁷		2.6x10 ⁻⁷	4.5x10 ⁻⁷	(mbar) 1.9x10 ⁻⁶
H ₂ part. pressure with gas inlet (90 sccm H ₂)	2x10 ⁻²	3x10 ⁻²	3.6x10 ⁻⁴	4.0x10 ⁻⁵	1.9x10 ⁻⁶	7.2x10 ⁻⁷	9.6x10 ⁻⁶
MW-dissociator running (H ₂ partial pressure)	2x10 ⁻²	3x10 ⁻²	4x10 ⁻⁴	9.5x10 ⁻⁵	2.7x10 ⁻⁶	1.5x10 ⁻⁶	1.2x10 ⁻⁴

Sufficient pumping speed of new forevacuum system

Storage Cell and Holding field

- **♯** Filtering requires 10¹⁵
 atoms/cm² therefore use of storage cell
- Use of Teflon foil to detect recoils and suppress depolarization and recombination

- **The Openable** cell to allow injected uncooled AD beam to pass
- Weak holding field coils included in cell design to define spin axis
- ➡ Pair of superconducting Helmholtz coils to provide a strong longitudinal holding field for separate determination of nuclear and electron effects during spin-filtering

Beam Line Vacuum at the Target

- Flow limiters to reduce gas flow into the adjacent sections
- **T** Pump with cold surfaces of the superconducting quadrupoles

Polarization Analysis

- TGA is used to determine atomic fraction of the target gas
- BRP measures the polarization of the target gas atoms using combinations of high frequency transitions in ABS and BRP
- The Calibration for H and D to measure both in a short time interval
- ☐ Cross check of the BRP measurement using pp (pp̄) scattering with unpolarized COSY (AD) beam

Status of the Polarimeter

- Former HERMES BRP rebuilt on a new support with modifications due to new configuration with the ABS
- Tracking calculations lead to modified sextupole magnet configuration for 300 K effusive hydrogen / deuterium beam

■ Next Step: New cabling and interlock system

Outlook

- ★ Measurements of the intensity and the degree of dissociation with the ABS this summer
- Testing of different dissociator setups if time allows
- **♯** Setup of the BRP with cabling and interlock
- **■** Move of the setup to COSY hall January 2008
- ★ Measurements with ABS, BRP and the storage cell in the analysis chamber in 2008
- ★ Start of design and construction of the target chamber hopefully soon

Summary

- Polarized gas target meets the requirements for the filtering tests
- Ability to provide highly polarized H and D in short sequence
- Storage cell will increase density to the values needed but thin teflon wall will allow to detect recoils
- Change of spin direction can be achieved by switching the weak target holding field from vertical to longitudinal
- BRP will be able to measure the target polarization with required accuracy (calibration using pp (pp) scattering)
- **■** Target setup will be completed end of 2007, measurements starting in summer 2009 at COSY and 2010/11 at AD