Irakli Keshelashvili for the ANKE collaboration

Luminosity Determination at ANKE

- via nuclear reactions
- via energy loss measurements
- Introduction
- Formalism
- Calibration
- Luminosity determination
- Conclusion

Introduction

Why Luminosity?

 $\frac{d\sigma}{d\Omega} = \frac{1}{L} \frac{N_{\text{exp}}}{A_{det}} \varepsilon_i$

you have to know!

- N_{exp} reconstructed number of events
- A_{det} detector acceptance
- ε_i efficiencies

- The Near-Threshold Production of ϕ Mesons in pp Collisions M.Hartmann et al., PRL 96, 242301 (2006)
- Precision measurement of the quasi-free pn→dφ reaction close to threshold
 Y.Maeda et al., PRL 97, 142301 (2006)
- Precision study of the $\eta^{3}He$ system using $dp \rightarrow^{3}He\eta$ reaction T.Mersmann et al., Accepted by PRL
- Shape of the $\Lambda(1405)$ hyperon measured through its $\Sigma^0 \pi^0$ decay. I.Zychor et al., Submitted to PRL
- There are some more publications

conventional via nuclear reaction (elastic >> inelastic)

$$L = \frac{N'_{exp}}{A'_{det} \varepsilon'_{i} (d\sigma/d\Omega)'}$$

alternative via energy loss measurement

Formalism

- L luminosity J_{beam} - flux of beam [S⁻¹] I_{beam} - COSY beam current [mA] q_{beam} - electric charge of beam [C] N_{τ} - effective thickness of target [cm⁻²] dT - energy loss per single target traversal dE/dx - stopping power of protons in hydrogen gas [NIST tables] m - proton mass $(1.673 \times 10^{-24} g)$ f_0 - revolution frequency, measured
 - T_0 beam kinetic energy
 - γ Lorentz factor
 - p_0 beam momentum
 - η off-momentum factor based on measured α
 - B_0 COSY dipole magnetic field

Beam target overlap

40 $\beta_{x}, \beta_{y}, D [m]$ T=2.65GeV 35⊟ 30 ⊟ • estimated emittance growth in 10 25 20 minutes = 0.15mm·mrad 15 10 possible beam position shift due 5 0 to residual dispersion = 0.1mm -5E ANKE arc arc -10 20 40 80 100 120 140 160 180 60 COSY Ring Length [m] 5 ä. cluster jet ion beam measurement of the beam target overlap measured calculated • beam foot width = 4.8mm (4σ) cluster jet diameter = 7mm 10 -5 0 5 -15 -10 15 [mm]

Raw Schottky Spectra's

Residual gas effect

- 100% beam+target overlap (red)
- Rest+Ring Gas target ON but ~0% overlap (yellow)
- Ring Gas target OFF (black)

$$N_{target} = N_{total} - N_{Ring + Rest}$$

1) Total frequency shift $= 1.35 \cdot 10^{15} [cm^{-2}]$ 2) Rest+Ring Gas $= 1.32 \cdot 10^{14} [cm^{-2}]$ 3) Ring Gas $= 5.31 \cdot 10^{13} [cm^{-2}]$

α measurement at 2.65GeV

 η – off-momentum factor based

on measured α

- $\alpha\,$ momentum compaction factor
- f_0 revolution frequency
- $\gamma\,$ Lorentz factor
- B_o COSY dipole magnetic field

$$\eta = \frac{1}{\gamma^2} - \frac{1}{\gamma_{tr}^2}; \ \gamma_{tr} = 2.3$$

 $\eta = \frac{1}{\gamma^2} - \alpha$

Luminosity determination

8

Luminosity via pp elastic scattering

ANKE/PAX Workshop '07

Luminosity via pp elastic scattering

where

- N_{det} is number of reconstructed events via MM
- *p* is prescaling factor
- ${\scriptstyle \bullet} \; \epsilon_{_{det}}$ is detection efficiency
- $\boldsymbol{\epsilon}_{_{dt}}$ is dead time correction

ANKE/PAX Workshop '07

Difference between 2 XS

A SAID Single Energy Solution for $T_p = 2.83 \text{GeV}$

Experimental measurements @ 2.83GeV

Comparison of pp and Schottky

Comparison of dp and Schottky

Uncertainties for both method

Error propagatio	n via energy loss	measurement
BCT:	I≈10mA	σ≤1%
Frequency shift:	∆f/f≈0.6Hz/s	σ≤3%
Eta:	≤η ≈-0.103	σ ≤5%
Ring gas:	Nt~10 ¹⁴ cm ⁻²	σ≤3%
Stopping power:	dE/dx	σ≤1%

Error propagation via pp elastic reactionDetector Eff.: $\epsilon \sim 5\%$ Acceptance: $A \sim 8\%$ Statistical error: $\epsilon \sim 2\%$ SAID: $\leq 2\%$?BG subtraction: $\leq 3\%$

With internal cell target

With pellet target

 η = 0.02; // to small

```
f<sub>o</sub> = 1.496688; // MHz
```

```
T<sub>0</sub> = 1400; // MeV
```


ANKE/PAX Workshop '07

Conclusion

- I. We have 2 independent method to determine luminosity
 ♦ via nuclear elastic scattering
 ♦ via energy loss measurement
- II. Both methods just coincide within the error limits
- III. We can use 'Schottky' method for different targets
 - ♦ with <u>cluster jet</u> target
 - \diamond with <u>cell</u> target
 - ♦ with <u>pellet</u> target

Beam intensity determination

$$J_{beam} = \frac{I_{beam}}{q_p}, [s^{-1}]$$

- Calibration (ADC-mA)
- Offset determination
- (EDDA, between cycles)

1000

2000

3000

9 01 15 Beam current [mA]

5000

Time [s]

4000

Luminosity determination

Schottky Method for ANKE

