The Polarized Internal gas Target at ANKE / COSY

Kirill Grigoryev

Petersburg Nuclear Physic Institute, Gatchina, Russia Institut für Kernphysik, Forschungszentrum Jülich, Germany

> Ferrara, Italy May 30, 2007

Polarized Internal Gas Target

PIT main components:

- Atomic Beam Source (ABS)
 - **H** or **D**
 - H beam intensity (2 HFS)

7.6 \cdot 10¹⁶ atoms/s

• Beam size at the IP

 $\sigma=2.85\pm0.42~mm$

• Polarization for hydrogen

 $P_Z = 0.89 \pm 0.01$ $P_Z = -0.96 \pm 0.01$

- Lamb-Shift Polarimeter (LSP)
- Target chamber with Storage Cell

Atomic Beam Source

Lamb-Shift Polarimeter

Lamb-Shift Polarimeter

Lamb-Shift Polarimeter at the laboratory

Storage cell

Proposed by W. Haeberli 2nd International Symposium On Polarization Phenomena, Basel, 1966

Storage cell

The first cell. Deuteron, VEPP-3

HERMES, DESY

PINTEX, IUCF-Cooler

ANKE, COSY

COSY – COoler SYnchrotron

 p, \vec{p}, d, \vec{d}

with momenta up to 3.7 GeV/c

- internal experiments with the circulating beam
- external experiments with the extracted beam

ANKE at COSY

Magnets

• D2 – spectrometer magnet

ABS and LSP in the COSY hall

December 2004 - transfer to COSY hall (outside of the COSY tunnel)May 2005- tests after reassembling

- ✓ Platform for all electronic and supply components
- ✓ Heat exchanger with closed cooling-water circuit
- ✓ New support bridge
- ✓ Supports representing D1 and D2

June 2005 – setup ready for installation at ANKE

Setup in the COSY hall

Magnetic stray field of D2

calculated field strength (G) measured field strength (G) permissible field strength for the device given by the producer (G)

PIT setup with shielded components at ANKE

Test of the Medium-field RF-Transition Unit

Do we have zero field crossings along the ABS axis?

Magnetic field scan with ANKE at 5.3° using a 3D Hallprobe (Gatchina):

- Magnetic field along ABS axis
- I_{D2} = 563 A • I_{D1D3}= 1294.84 A
- 1. Determine the local Larmor precession frequency ω_L
- 2. The angular velocity of the magnetic field ω_{B} .
- As long as the ratio $R=\omega_L/\omega_B$ is large, the spin of the atom follows the field direction.
 - → no depolarization due to zero crossings

Principle of the aperture test

Beam diameter = Aperture inner width - (Distance 2 + Distance 3)

Estimated COSY-beam profile

Cooler Stacking with the Storage Cell

Θ _{ANKE}	beam	Number of accelerated protons to 600 MeV		
		no cell	empty cell	ABS H-fed cell
0°	electron cooling	$1.4 \mathrm{x} 10^{10}$	3.5x10 ⁹	
	Stacking + electron cooling	2.6x10 ¹⁰	2.0x10 ¹⁰	
9.2°			6.0x10 ⁹	6.4x10 ⁹

K.Grigoryev

Cooler Stacking with the Storage Cell

K.Grigoryev

Cooler Stacking with the Storage Cell

Stochastic cooling

• Length of the cycle = 10 min • Minimum energy for stochastic cooling is 831MeV

First PIT commissioning (ANKE at 9.2°, COSY beam – 600 MeV protons)

- Storage cell (Al foil coated with PTFE)
- ABS jet with cryo-catcher
- Polarized ABS-jet measurements
- Second PIT commissioning (ANKE at 5.3°, COSY beam – 831 MeV protons)
 - Storage cell (pure Al foil)
 - Background investigations

First double polarized experiment $\vec{dp} \rightarrow ppn$

(ANKE at 5.5°, COSY beam – 1.2 GeV polarized deuterons)

- Storage cell (Al foil coated with PTFE)
- LSP measurements

PIT at ANKE

- Supporting bridge betweenD1 and D2
- Additional shielding from the D2 stray fields
- Cryopump at the target chamber
- Polarimeter ionizer under the target chamber

Commissioning results

Preparation for the experiment

- Tools for the experiment
 - □ New storage cell & support
 - > high target density> unpolarized gas feeding system
 - □ LSP below the target chamber
 - > online measurement of the ABS beam polarization
 - □ Silicon tracking telescope (STT)
 - > measurement of spectator protons nearby the storage cell center

Stacking \rightarrow 120 injection with 10 s e-cooling Flat top \rightarrow 30 min, to have about 2/3 duty time

Stacking \rightarrow 120 injection with 10 s e-cooling Flat top \rightarrow 30 min, to have about 2/3 duty time

Results and future plans

Results

- Stable polarization, measured with LSP every 24h
- High density of the polarized gas target
- High luminosity with polarized deuteron COSY beam
- Hydrogen target polarization from nuclear reaction

1.34 \cdot 10¹³ at/cm² ~ 1 \cdot 10²⁹ s⁻¹cm⁻² 0.75 \pm 0.06 Talk by A. Kacharava

Plans

- 4 weeks double-polarized experiment in the beginning of 2008 accepted by PAC
- ABS transition units calibration for deuterium beam for the future experiments with polarized deuteron target