Polarized Internal Targets

Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich

Workshop on Polarization in PANDA Ferrara, Italy March 17, 2008

Gas Targets in Storage Rings

 $\vec{H}, \vec{D}, \vec{H} \vec{e}$

Gas Targets:

- Thin
- isotopically pure
- polarized

Storage Rings:

- high stored currents
- low background

Outline

Introduction

- Principle of a PIT
- Main types of sources for targets
- Storage Cells
 - Spin Relaxation
 - Examples
- Polarimetry of PIT's
 - hadronic reactions
 - Ion-extraction
 - extraction of neutral gas samples

Principle of a polarized internal target

Polarized gas targets internal to storage rings provide **distinct advantages** over solid or high pressure targets:

> rapid reversal of target spin (x,y,z): In H/D up to 100 Hz achieved

- isotopically pure, no contamination by uppolarized components in the target
 point-like 5-10 mm free jet low density 10¹² cm⁻²
 low background due to absence of container walls to absence of container walls 10¹⁴ cm⁻²
- no radiation damage, target gas replenished every few ms
- \Rightarrow PIT's are ideally suited for high precision experiments

Four main types of sources for PIT's

Atoms with $m_j = +\frac{1}{2}$ focused in sextupole magnets. RF transitions select HFS.

 $W_{\text{thermal}} \leftarrow W_{\text{magnetic}}$ One electron spin state $m_j = \frac{1}{2}$ extracted from strong solenoid field and focused

Main types of sources (cont'd)

Spin-Exchange source

Deuterium or Hydrogen atoms polarized by spin-exchange with optically pumped potassium vapor Small fraction of metastable ³He (2³S₁) atoms pumped with laser optical pumping. Ground state atoms polarized via exchange collisions

³He source

exchange collisions

 $^{3}\text{He}(2^{3}\text{S}_{1})$

OP

He(g.s.)

Storage cells

Main task: Identification of suitable cell wall materials that

- suppress depolarization in wall collisions
- are compatible with storage ring operation

Results

Storage cells for storage rings

Filtex Test Experiment at Test Storage Ring Heidelberg

- Clam shall mechanism 3.
 - No limitation of machine acceptance during injection
- Spot-welded structure 4.
 - Test of a closed cell
- Cylindrical tube 5.

10 mm

1 2 3 4 5

1992 ³He target at IUCF

1994 PINTEX cells for pp elastic experiments

Thin walls from teflon foil
450 μg/cm² (1 μm)
warm cell

This type of cell ideally suited for **quasi-free pn scattering** on deuteron target with detection of low energy spectator protons

1996 HERMES H and D target cell at HERA-e

1999 EDDA cell for test at COSY

Polarized EDDA target primarily used as an atomic jet

- spin correlation, analyzing powers in pp elastic scattering
- Time-Reversal invariance exp't needs a storage cell

1999 pd elastic at IUCF (CE66)

Cell body has to be kept at high temperature in order to maintain K-vapor.

2005 ANKE PIT

Storage cell setup

Coating:

Teflon

Polarimetry of PIT's

Method I does not distinguish atoms from molecules or any other material in the target \Rightarrow 1st choice whereever applicable

Methods II and III measure the polarization of atoms in the target, with additional instrumentation also the degree of dissociation in the target but: Molecules dilute the polarization! and: What is the polarization of the molecules?

Ex. 1: αp scattering at 27 MeV

Results

Frank Rathmann

Polarized Internal Targets

Polarization vs time and vs z

Ex. 3: Polarized Target for ANKE with Lamb-shift Polarimeter

Target polarization Qy=0.79 ± 0.06

Online monitoring of ABS polarization via LSP

Frank Rathmann

Polarized Internal Targets

23

Ex. 4: NIKHEF Ion-extraction polarimeter

Ex. 5: HERMES Breit-Rabi Polarimeter

Determination of Hyperfine state population numbers by

- RF transitions
- sextupole magnet system

