Classical Solution of Wave equation

$$\nabla^2 u = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \quad ; \quad u : \text{ displacement}$$

- One dimensional

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

$$u(x,t) = f(x-ct) + g(x+ct)$$

- Spherical Symmetry

$$\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} - \frac{2u}{r^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$
$$u(r,t) = f \frac{(r-ct)}{r} + g \frac{(r+ct)}{r}$$

Cylindrical Symmetry

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{u}{r^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

$$u(\mathbf{r}, \mathbf{t}) = \sum_{n=1}^{\infty} c_n J_1(\varepsilon_n \xi) \cos(\varepsilon_n \theta)$$

$$\xi = r/R, \theta = ct/R$$

Fig. 1 Initial axial stress distribution in an instantaneously heated rod.

Fig. 2 The square wave describing the initial axial stress distribution in the rod -L ≤ x ≤ +L.

Fig. 3 The development of the axial stress in the instantaneously heated rod, obtained by the superposition of two square waves F(x,t), travelling in opposite directions. The time t is measured in units of L/c.

Fig. 13 The total (quasi-static plus dynamic) radial scress in an instantaneously heated A disk of radius R at different times. The time parameters are given in units of R/z.

Fig. 1 The development of the total central stress in time for an infinitely rapid (to = 0) and a finite (to = 20 µsec) temperature increase.

Fig. 1: Equivalent v. Mieses stress (in relative units of $E\alpha_L\Delta T_0$) vs. time θ (θ in relative units of R/c) in the center of a solid target. In addition to the black curve, which is for infinitely fast heating, also oscillations are shown for uniform heating over the durations $\theta_0 = 0.5, 1, 2$ and $10 (\theta_0)$ in units of R/c).

Fig. 2: Equivalent v. Mieses stress vs. time at the outer radius of a solid target. The same units as in Fig. 1 apply.

Pressure in Ir

(by N. Tahir, Aug. 2006)

Burst Frequency: 50 Hz

Target: 1cm x 1cm

L = 40cm

Free		Pulsed	Continuous Curtain		
	Jet	Curtain	Tip explodes	Curtain explodes	
	111				
		_8 8		8	
Volume Flow (cm ³ /s)	2000.	2000.	2000.	5000.	
8		8			
Velocity at nozzle (m/s)	>20.	1.25	0.5	1.25	
			却	7/2	
Pressure (kPa)	2700	10.5	1.7	10.5	
	23 99	Pulsed Pressure. Mech. or el. magn. valve			

LIQUID TARGET RADIAL INJECTION INTO SOLENOID

Guilbert 4

PULSED TARGET

