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Introduction. While the geophysical structure of the Earth is quite well known, information 
on its composition relies on shallow drill cores and samples brought to the surface by volcanic 
eruptions. Breakthroughs in the field are expected from the interplay between Earth Science and 
Particle Physics, which are currently exploring the promising scenarios of the Earth spectrometry 
with atmospheric neutrino oscillations (Rott et al., 2015) and geoneutrinos detection (Fiorentini 
et al., 2007). Geoneutrinos are a unique probe of the inaccessible deep Earth: by measuring 
their flux and energy spectrum it is possible to infer the global amount, distribution and ratio of 
U and Th, essential ingredients for the discrimination among different bulk silicate Earth (BSE) 
compositional models.

The recent measurements from Borexino (Italy) and KamLand (Japan) detectors are 
opening the way to multiple-sites geoneutrino studies aimed at distinguishing between the site-
dependent crustal components (~75% of the signal) from the almost constant mantle component 
(~25% of the signal). Moreover, new geoneutrino measurements are highly awaited from the 
SNO+ detector (Canada) and from the Jiangmen Underground Neutrino Observatory (JUNO) 
experiment. However, to correctly discriminate the mantle contribution to the geoneutrino flux 
from the crustal one, geophysical and geochemical models in the surrounding of the detector 
are required. Currently, this task is mainly performed by exploiting global models, like CRUST 
1.0, but site-specific models with local inputs can improve the accuracy of separation.

The goal of this work is to build a 3D geophysical model of the 6° × 4° area centred at the 
location of the JUNO experiment, currently under construction in the Guangdong Province 
(South China), by exploiting GOCE gravity data integrated with some a-priori geological and 
geophysical knowledge by means of a Bayesian approach to gravity inversion (Mosegaard and 
Tarantola, 2002). 
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In the following we analyse the provided geological and geophysical information, the 
inversion algorithm and the obtained results.

Study area and available geophysical information. The study area includes the northern 
margin of the South China Sea, the Guangdong region and the south-eastern part of Guangxi 
region. It is a part of the South China Block that has a complex tectonic history (John et al., 
1990), as well as poorly understood crustal composition and thickness (Zheng and Zhang, 
2007).

As our final model assumes a layered crust and a one-layer uppermost mantle, we define 
the following surfaces: the topography/bathymetry, the bottom of sediments (i.e. the Top of the 
Upper Crust, TUC), the Top of the Middle Crust (TMC), the Top of the Lower Crust (TLC), the 
Moho Discontinuity (MD).

The constraints for the definition of the crustal model are obtained from published studies, 
including Deep Seismic Sounding profiles (DSS), Receiver Functions (RF), teleseismic P-wave 
velocity models and Moho depth maps, as shown in Fig. 1. Each of this data is taken according 
to its accuracy when introduced as prior probability in the Bayesian inversion algorithm.

Bayesian gravity inversion. We introduce an algorithm based on a Bayesian approach 
(Rossi et al., 2016) and able to invert the gravity field by integrating some a-priori data on the 
crustal structure coming from geological and geophysical data. This approach allows obtaining 
a 3D voxel-wise crustal model beneath the detector.

The investigated volume is split into voxels, Vi, with index i = 1, 2 ..., N. Each voxel is a 
regular prism with a fixed size and described by two parameters: a label Li, denoting the material 

Fig. 1 - Geophysical input data used for the construction of the 3D model in the 6° × 4° area centred at the location 
of JUNO detector (Guangdong, South China) Data from deep seismic sounding profiles, P-wave velocity profiles 
and seismograph stations are used as input to build the a priori model for the inversion of gravimetric data. The raw 
observations of gravimetric disturbances (δg) are represented as a continuous grid with 5 km × 5 km resolution.
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inside the voxel (e.g. Upper Crust), and a mass density ρi. The prisms are disposed on a regular 
grid in Cartesian coordinates, and the forward modelling is performed in planar approximation. 
This geometry allows to easily introduce neighbourhood relationships. The inversion algorithm 
is based on the Bayes theorem:

P (x | y) ∝ L  (y | x) P (y)	 (1)
where y is the vector of observables, i.e. the gravity signal, x is the vector of parameters L, ρ 
for all voxels, P (x | y) and P (x) are the posterior and the prior distribution, respectively, and 
L  (y | x) is the likelihood. Gravity is observed, therefore the likelihood represents the degree of 
fit between the observed and modelled signal. The prior distribution is defined by considering 
the available geological and geophysical information on the study region, integrated with some 
regularization conditions. This information is supplied to the algorithm in the following way:

•	 a range of variation of each boundary surface between two layers with different labels;
•	 neighbourhood rules between the possible couple of labels;
•	 the density of each material, i.e. of each label, in terms of the most probable value and its 

range of variation;
•	 constraints on lateral and vertical variation of the density (e.g. maximum admissible 

lateral and vertical variation or increasing/decreasing density with depth).
The shape of the prior distribution is chosen to highlight the dependency of each density ρi 

on the label Li:

(2)

The density of each voxel ρi is assumed to be normally distributed once the label Li is 
given. Its mean μρ (Li) and its variance σ 2ρ (Li) are given as a-priori information. Furthermore, 
the distribution is truncated at μρ (Li) ± 3 σ 2ρ (Li), or even with a stricter range when required to 
satisfy the constraints.

On the other hand, the labels L are modelled as a Markov Random Field. Therefore, their 
probability distribution assumes the shape of a Gibbs distribution where the energy is the sum 
of the clique potential (Azencott, 1988), depending from two penalty functions s2

i (Li) and 
q2 (Li, Lj), where Lj is the label of a neighbour voxel. These functions are used to define the limits 
of the boundary surfaces and the neighbour rules between different materials, respectively. 
Moreover, q2 (Li, Lj) inherently imposes the regularity of the boundary surfaces between two 
layers.

Then, invoking the Maximum A Posteriori (MAP) principle, the most probable set of labels 
and densities is chosen as the solution. This corresponds to find the minimum of the following 
target function:

(3)

conditioned to the constraints defined by prior information (e.g. maximum lateral density 
variation). Where yo is the vector of observed gravity, C–1

νν its noise covariance matrix and η, γ, 
and λ weights balancing the contribution of the prior terms among them and with respect to the 
likelihood.

The minimum of Eq. 3 is retrieved by using a stochastic optimization method, i.e. a Simulated 
Annealing aided by a Gibbs Sampler (Robert and Casella, 2004).

Gravity data and prior modelling.  The model to be estimated was chosen with a horizontal 
resolution of 50 km × 50 km and a vertical one of 100 m. The observations to be inverted are the 
gravity anomalies synthesized from the GOCE-only space-wise model up to degree and order 
330 (Gatti and Reguzzoni, 2017). We choose this model since a satellite-only solution can avoid 
the introduction of useless high frequencies that cannot be interpreted by a voxel model with 
the given geometrical resolution.
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The geophysical inputs explained in Sect. 2 are used to define the prior distribution in Eq. 
2, providing geometrical and density information. Note that all the voxels above the TUC 
surface have fixed label and density because topography and bathymetry were taken from the 
GEBCO08 1’ grid, while the sedimentary layers were taken from the CRUST 1.0 model. 

The a-priori geometrical information entered as the admissible depth ranges of the TMC, TLC 
and Moho surfaces, computed by using the available geophysical data and their uncertainties 
and used to set up the penalty functions s2

i (Li) and q2 (Li, Lj) in Eq. 3. In the areas lacking in local 
seismic information, an additional input was given by the global crustal model at 1° × 1° spatial 
resolution reported in Huang et al. (2013).

As for the a-priori probability distribution of the model density, the mean and standard 
deviation of Upper Crust (UC), Middle Crust (MC) and Lower Crust (LC) are defined 
reproducing the statistics of the CRUST 1.0 global values, integrated with local values inferred 
from DSS seismic velocity data, while the uppermost mantle layer is designed with a mean 
density according to the PREM model. To introduce a density spatial regularization in the final 
model, constraints on the maximum lateral and vertical variations between two adjacent voxels 
are introduced, under the condition of increasing or decreasing density with depth.

Estimated crustal model. The final estimation of the model is retrieved by optimizing the 
target function of Eq. 3 for different sets of input parameters. A set of 103 combination of the 
deterministic parameters present in Eq. 3, i.e. the ones weighting the prior terms and controlling 
the strength of the geometry and density constraints, are used to compute different solutions. 

Then, to find the best one, a direct comparison of the target function values is not useful, 
because of the missing normalization. Therefore, four indexes are defined and computed per 
each estimated solution to evaluate the quality of gravity fitting, the level of density smoothing 
(considering both lateral and vertical variation) and the level of discontinuity surfaces 
smoothing. The best solution is chosen by a two-step procedure:

Fig. 2 - Depth maps of the Top of the Upper Crust (TUC), Top of the Middle Crust (TMC), Top of the Lower Crust 
(TLC) and Moho Discontinuity (MD) for the 6°×4° area centred at the JUNO detector location. Negative values mean 
surfaces above the zero-level.



GNGTS 2019 Sessione 1.4

243

1.	 the solutions are filtered by imposing constraints on the values of the indexes, thus 
filtering 17 solutions among the 103 computed;

2.	 the one which vector of the indexes has the minimum norm has been chosen.
From now on, this model is called GIGJ (GOCE Inversion for Geoneutrinos at JUNO). The 

output of the GIGJ solution is made up of ~46×103 voxels, each one assigned with density and 
label values. Its geometry and density distributions are shown in Fig. 2 and Fig. 3, respectively. 
As expected, the GIGJ crustal model exhibits a crustal thinning moving from the north west 
(continental crust) to south-east (oceanic crust) , together with a higher spatial heterogeneity of 
the UC density with respect to the MC and LC layers.

Fig. 3 - Frequency distributions of the density values for each label of the GIGJ model for the Upper Crust, Middle 
Crust, Lower Crust and Uppermost Mantle. The latter corresponds to the portion of continental lithospheric mantle 
down to a constant depth of 50 km.

With the aim of estimating the geophysical contribution to the geoneutrino signal 
uncertainty for each crustal layer, the overall mass and volume uncertainty of the GIGJ 
solution was calculated. It comprises an estimation error component associated to the solution 
of the inverse gravimetric problem and a systematic error component due to the adoption of 
a fixed sedimentary layer. Since the joint posterior distribution P (ρ, L | yo) of all the voxels 
cannot be evaluated, the estimation error component of GIGJ was split into a density and a 
geometry contribution, both estimated by sample statistics on proper marginal distributions of 
the individual voxels.

Expected geoneutrino signal. The GIGJ model was divided into 7 × 107 cells of 1 km × 1 
km × 0.1 km, each one assigned with crustal layer label, density value and unitary U and Th 
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abundances (αU = αTh = 1 µg/g). The expected geoneutrino signal linearly scales with the U and 
Th mass distributed in the crust and depends on the source-detector distance r by a combined 
effect of the 1/4π r2 spherical scaling factor and the average antineutrino survival probability, 
which oscillations gradually damp for increasing distance from the experimental site. Based 
on the approach and input parameters described in Sect. 7 of Strati et al. (2017), we calculated 
the geoneutrino signal expressed in Terrestrial Neutrino Units (TNU) (Fiorentini et al., 2007).

From the comparison between the signals calculated using the prior and GIGJ models, it 
is possible to infer that the benefit of using gravity information with the proposed inversion 
procedure, led to a site-specific repartition of the signal contribution from deep layers (MC and 
LC) together with their uncertainty.

Conclusions. GIGJ is a 3D numerical model constituted by ~46×103 voxels of 50 × 50 × 0.1 
km. GIGJ fitted homogeneously distributed GOCE gravity data with a standard deviation of the 
residuals of the order of 1 mGal, compatible with the observation accuracy. The solution was 
the smoothest one in terms of both density distribution and geometrical shape.

Regarding geoneutrino signals prediction, the main outcome of this study was the 77%, 55% 
and 78% reduction of the UC, MC and LC signal uncertainty. Because of the rearrangement 
of the crustal layers thicknesses, we predicted a reduction (~21%) and an increase (~24%) 
of the MC and LC signal respectively, in comparison with the results obtained from global 
models.

This study demonstrated that a Bayesian-based gravimetric inversion applied to reliable 
satellite data, rationally integrated with local geological and seismic information, provided a 
coherent picture of the crustal structure at the natural spatial scale required for geoneutrino 
studies.
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