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We present an updated estimate of reactor antineutrino signal all over the world, with particular

attention to the sites proposed for existing and future geo-neutrino experiment. In our calculation

we take into account the most updated data on Thermal Power for each nuclear plant, on reactor

antineutrino spectra and on three neutrino oscillation mechanism.
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Sites R [TNU] RG [TNU] G [TNU] RG/G

LNGS 85.8± 4.6 22.8± 1.1 40.3+7.3
−5.8 0.6

KAMIOKA 70.1± 3.7 18.7± 1.1 31.5+4.9
−4.1 0.6

SUDBURY 174.6± 9.0 43.1± 2.1 45.4+7.5
−6.3 0.9

PHYASALMI 69.2± 3.7 17.5± 0.8 45.3+7.0
−5.9 0.4

FREJUS 587.9± 31.0 134.0± 7.1 42.4+7.6
−6.2 3.2

HOMESTAKE 27.7± 1.5 7.3± 0.3 48.7+8.4
−6.9 0.1

HAWAII 3.4± 0.2 0.9± 0.04 12.0+0.7
−0.6 0.1

CURACAO 9.5± 0.5 2.5± 0.1 29.3+4.2
−3.3 0.1

Table 1: Comparison between expected reactor (R) and geo (G) antineutrino signal. RG indicates the re-
actor signale expected in the geo neutrino energy window (Eν̄ < 3.26 MeV). Geo-neutrino signal has been
calculated following the approach described in [14]. 1 TNU =1event/year/1032 protons.

1. Discussion

Antineutrinos from the decay chains of238U and232Th existing in the Earth interior (the so
called geo-neutrinos) have been recently detected both by Kamland [1] and by Borexino [2] ex-
periments. Future experiments for geo-neutrinos dectection have been proposed (or starting) in
several location in the world (e.g. SNO+ in Canada [3], Lena project in Europe [4] and Hawaii
Anti-Neutrino Observatory[5]).

The main source of background of such experiments is given by antineutrino produced by
nuclear plants. These particles account for a signal almost always larger than geo-neutrinos one,
see Table 1. So a detailed calculation of reactor antineutrino flux in mandatoryfor an accurate
measuraments of geo-neutrinos.

With this aim, we performed a calculation of reactor antineutrinos flux all over the world. Pre-
vius analysis has been presented, for instance, in ref. [6] and [7]. Now we will show an updated
estimate of reactor antineutrino signal, with particular attention to the sites proposed for the new
geo-neutrino experiments. In our calculation we take into account the most updated data on Ther-
mal Power for each nuclear plant, on reactor antineutrino spectra and onthree neutrino oscillation
mechanism. The expected reactor antineutrino signal has been calculated as follows:

Nev = εNpτ
Nreact

∑
r=1

Pr

4πL2
r

< LFr >

∫
dEν̄e

4

∑
i=1

fi
Ei

φi(Eν̄e)σ(Eν̄e)Pee(Eν̄e; θ̂ ,Lr) (1.1)

whereε is detector efficiency,Np is the number of target proton,τ is period of data taking, index
r cycles over theN reactors considered,Lr , Pr and< LFr > are the distance, the nominal thermal
power and the averaged Load Factor of reactorr, respectively. The indexi stands for the i-th spec-
tral component in the set (235U, 238U, 239Pu, and241Pu), fi is the power fraction of the componenti,
as reported in[2],Ei is the average antineutrino energy per fission of the componenti [11], φ(Eν̄) is
the anti-neutrino flux per fission of theith component, as recently calculated in ref.[9],σ(Eν̄) is the
inverse beta decay cross section[12] andPee is the survival probability of the reactor antineutrinos
of energyEν̄ traveling the baselineLr ,depending on the mixing parametersθ̂ .

In Eq. (1.1) we assume a 100% dectection efficiency, for a detector containing 1032 target
protons and operating continuosly for 1 year. In particular we considerthe nuclear cores all over
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Figure 1: A worldwide map of reactor antineutrinos signal. 1 TNU= 1 events/yr/1032 target protons

the world, operating in the year 2012. Information on the nominal thermal power and monthly load
factor for each nuclear cores originates from International Agency of Atomic Energy (IAEA) [8].
Concerning survival probability, we assumed a three flavour vacuum oscillation mechanism with
Pee as in in ref.[10], and mixing parameters from ref.[13].

The results of our calculation are reported in Table1 and in Fig.1. We also performed a analysis
on the sources of uncertainty in reactor signal prediction, see[7] for details. The total uncertainty
is of the order of 5%, the main contributions (i.e. greater than 2%) arising from θ12 mixing angle,
antineutrino spectrum, fuel composition and thermal power.

One can see that, due to reactors shutdown occured in 2012, Kamioka became a suitable site
for dectecting geo-neutrinos, comparable to LNGS. A new european geo-neutrino detector located
at Frejus Laboratory requires a detailed knowledge of closeby reactors; the choice of Phyasalmi
looks better in this respect. Of course Hawaii and Curacao are wonderful places for geo-neutrino
studies due to their position far away from any nuclear plants of the world. The same holds for
Homestake. In the near future, the SNO+ experiment, with a quite reasonable ratio RG/G, will
provide more information about Earth’s interior.
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