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Abstract: Soil texture is key information in agriculture for improving soil knowledge and crop
performance, so the accurate mapping of this crucial feature is imperative for rationally planning
cultivations and for targeting interventions. We studied the relationship between radioelements and
soil texture in the Mezzano Lowland (Italy), a 189 km2 agricultural plain investigated through a
dedicated airborne gamma-ray spectroscopy survey. The K and Th abundances were used to retrieve
the clay and sand content by means of a multi-approach method. Linear (simple and multiple)
and non-linear (machine learning algorithms with deep neural networks) predictive models were
trained and tested adopting a 1:50,000 scale soil texture map. The comparison of these approaches
highlighted that the non-linear model introduces significant improvements in the prediction of soil
texture fractions. The predicted maps of the clay and of the sand content were compared with the
regional soil maps. Although the macro-structures were equally present, the airborne gamma-ray
data permits us shedding light on finer features. Map areas with higher clay content were coincident
with paleo-channels crossing the Mezzano Lowland in Etruscan and Roman periods, confirmed by
the hydrographic setting of historical maps and by the geo-morphological features of the study area.

Keywords: airborne gamma-ray spectroscopy; non-linear machine learning; potassium; clay; thorium;
sand; soil texture; paleo-hydrography

1. Introduction

Soil is an essential resource that, now more than ever, plays a multifaceted and crucial
role in human well-being and society. Its regulating functions on global climate and water
availability, as well as food production, provide in fact a fundamental link between soil
and life on Earth [1]. The improvement of land quality, the reduction in soil pollution
and the restoration of degraded lands are all cross-cutting themes of the 2030 Agenda for
sustainable development goals [2]. It follows that the understanding of the complex soil
properties and their interaction processes must be a basic principle for the sustainable
management of this resource.

In precision farming, the availability of high-resolution maps of the soil’s physical
and chemical parameters is emerging as a crucial need to reduce the risk of yield failure
and improve crop management [3,4]. In this puzzle, soil texture is undeniably the main
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influencing parameter in several biological, chemical and physical processes. The grain
size of sediments affects transport, deposition and erosion processes occurring in soils [5,6],
as well as the property of the mineral surface of adsorbing organic matter, nutrients and
pollutants [7,8]. Soil texture is a decisive controlling factor of the hydraulic conductivity and
hence the water surface infiltration [9], which strongly impacts groundwater availability
and flow water paths. Textural features presently observed are valuable records of the
evolutional processes involving the filling of abandoned channels resulting from rivers’
shifting processes, such as meander cutoff and channel-belt avulsion [10,11].

The quantification of the sand, silt and clay components in the soil is traditionally
performed via direct methods (e.g., sieving, sedimentation, laser-diffraction analysis), and
scattered measurements with all the drawbacks arising from them, such as the limited size
of the investigated volume, time-consuming and destructive operations [12,13]. Indirect
measurements of the soil texture through remote sensing surveys can overcome these
limitations, providing high-resolution maps of soil properties. In addition, soil reflectance
measurements from multi-spectral and radar sensors mounted on board satellites [14–16]
and gamma-ray data acquired through proximal surveys have proved to be useful and
promising options for predicting soil texture [17–19]. Even if the basic application of
gamma-ray spectroscopy in soil science is to investigate the composition of the source
bedrock, the gamma signal emitted by soil is likewise related to the abundances of the
granulometric classes and to the weathering and pedogenesis processes [20]. Clay and
silt particles tend to behave as colloids. Their elevated specific surface area is responsible
for the cation’s adsorption (e.g., K+, U4+, U6+ and Th4+) that increases with the grade
of weathering [21,22]. Focusing on the mineral structure, as a general rule, the natural
radioelements are more abundant in clay minerals (typical of the fine fraction) than in
quartz (the main constituent of sand) [23]. The application of machine learning algorithms
for soil texture estimation has been proven to be an effective analysis technique. The
absence of any a priori assumption on the relationship types between soil fractions and
radioelement abundances The term “radioelement abundance” refers to the mass fraction
(weight percentages) of the corresponding radioelement in the gamma-emitting material,
i.e., in the soil for this case. K abundances are indicated in 10−2 g g−1, while U and Th
abundances are indicated in µg g−1. permits overcoming the site specificity arising from
the influence of the parent materials in the cation’s adsorption [24–26].

In this study, the performance of airborne gamma-ray spectroscopy (AGRS) is tested
for the discrimination of soil texture properties with a multi-approach method. AGRS
data acquired through a dedicated survey in the Mezzano Lowland (Emilia-Romagna,
Italy) are analyzed to retrieve the soil textural fractions of the investigated soils via simple
linear regression (SLR) and multiple linear regression (MLR) analysis and through the
application of non-linear machine learning (NLML) algorithms, a promising technique for
the analysis of agro-environmental and geological data remotely acquired [27–29]. The
study area (~189 km2) was investigated for the first time with a homogenous coverage
and was revealed to be particularly suitable for this research purpose. Firstly, in this flat
and rural area that has experienced extensive reclamation actions in the past century, the
almost exclusive presence of agricultural soils drastically reduced the influence of anthropic
structures on the measured radiometric data. Secondly, the public soil texture map of the
Emilia-Romagna Region (RER) at a 1:50,000 scale can be fully exploited for the correlation
studies and the training stages of the NLML analysis. Finally, the possibility of comparing
AGRS data with hydrographic historical maps is a valuable opportunity to infer important
indications about the Po River delta setting evolution in the Mezzano Lowland.

2. Materials and Methods

The study area, known as Mezzano Lowland, is an ~189 km2 flat area located in the
Emilia-Romagna region (Italy) in the eastern area of the Po plain (Figure 1). The Mezzano
Lowland was a brackish marsh until the 1960s, when land reclamation processes converted
it into cropland. This area is one of the most sparsely populated in Italy and is characterized
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by its rural appearance and the scarce presence of buildings and infrastructure. Indeed, at
the time of the reclamation, the use of cars was already quite diffuse, and farmers chose to
live in countryside villages. The absence of infrastructure greatly reduces the anthropic
disturbance in the airborne gamma signal and makes the area particularly suitable for
the purpose of this study. Nowadays, the whole area is below sea level (−3.5 to −0.5 m
a.s.l.) and is almost entirely constituted by agricultural fields grown with cereals, soy and
tomato crops.
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Figure 1. The Po plain area near the Mezzano Lowland in the VI-IV century BCE (a) III century CE
(b), XIX century CE (c) and its current setting (d). For the tracing of the area’s evolution, historical
maps from local archives [30] were adopted and simplified. For each period, the main hydrographic
features and coastline are shown; current placement of cities, towns and coastline, together with the
limits of the Mezzano Lowland study area are reported in all panels. Cartographic reference systems:
WGS 84 and UTM Zone 32N.

2.1. Hydrographic Evolution of the Study Area

The retracing of the hydrographic evolution of the Mezzano Lowland from the Pleis-
tocene (2.58–0.012 Ma) to the Holocene (0.012 Ma—present) is a key point for understanding
the current textural features of its soils and their spatial distribution.

The Po plain formed during the Pleistocene when the alluvial sediments, eroded from
the Alps and the Apennines Mountain ranges and then transported by the Po River and its
tributaries, filled the marine gulf present at the time in the area. The easternmost portion,
corresponding to the Po delta, has always been characterized by multiple sedimentation,
erosion and subsidence processes strongly influenced by climate variations [30].

The current area of the Mezzano Lowland was crossed, from the X century BCE until
the VII century CE, by the hydrographic system “Po di Ferrara—Eridano” (part of the
eastern Po river’s terminal sector), with the Eridano, Idice and Valreno channels playing a
prominent role in the evolution of this area (Figure 1).

Historical records show that during the VI-IV century BCE the Po di Ferrara—Eridano
system included the Proto Idice and Proto-Valreno. Since information about subsidiary
channels (often called with different names) are uncertain in the pre-roman period, we
named them as Proto Idice and Proto-Valreno to indicate an earlier stage of their evolution
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process. channels, both originating from a subparallel distributary branching off nearby
the current location of the town of Portomaggiore (Figure 1a). These channels crossed the
area of the Mezzano Lowland from SW to NE, reconverging downstream in the Eridano’s
riverbed. At this time, the coastline was located approximately 10 km west with respect
to the present one. During the III century CE, the Eridano’s delta formation caused the
eastward migration of the coastline near Comacchio, while artificial fluvial diversions
changed the provenance of Idice and Valreno waters, without affecting their path within
the Mezzano Lowland (Figure 1b). In the following centuries, the intense erosion processes
of the delta and the spread of salt marshes in the whole area led, in the VII century CE,
to the complete abandonment of the Po di Ferrara—Eridano system with the consequent
sedimentary filling of their riverbeds (Figure 1c). During the XII century CE, the southern
branches of the Po delta further lost their importance due to the northward migration of
the Po river, which defined a new riverbed (later known as Po Grande) flowing north of
the city of Ferrara, with the consequent accretion of another delta and the migration of the
surrounding coastline (Figure 1c). The Mezzano Lowland, characterized by diffuse and
pervasive salt marshes and by the absence of a hydrographic system (Figure 1c), remained
substantially unchanged until the successive land reclamation processes of the XX century
(Figure 1d). The reclamation was carried out in the 1960s through the implementation of a pit
system, which collects and converges waters into a canal network. It is worth noticing that
after 1740, a portion of the Eridano’s riverbed was artificially reoccupied by the canal known
today as Canale Navigabile, which is part of the current drainage and irrigation system.

2.2. Soil Texture Data

The Geological, Seismic and Soil Service of RER provides soil texture maps, relative to
the upper 30 cm of soil, at 1:50,000 scale at 500 m × 500 m resolution for the entire regional
territory. These maps were obtained by interpolating punctual textural data via the Scorpan
Kriging method, with geopedological data serving as ancillary information [31]. In this
study, we extracted, for the 723 square meshes belonging to the Mezzano Lowland, the
weight percent content of clay, sand, and silt together with the associated texture class
defined according to the United States Department of Agriculture (USDA) classification.
The reliability class associated with the estimation of sand, silt and clay content is defined
as “low” for 84%, 66% and 85% of the meshes, respectively; for the remaining, “medium”
or “high” classes are assigned.

2.3. Radiometric Data

AGRS is a well-established technique that has been applied in geoscience stud-
ies for decades with diverse purposes, ranging from mining exploration to geological
mapping [20,32–36].

The AGRS survey was performed using the Radgyro [37,38] (Figure 2a), an aircraft
equipped with GPS antennas and altimetric sensors for the logging of the geographic
latitude and longitude and the flight altitude [39]. A modular NaI(Tl) scintillation detector,
composed with four 4L-crystals, is placed in the middle of the Radgyro hull. The survey
was divided into three flights for a total of 4 h and 45 min and 482 km (Figure 2b), with a
mean velocity of 102 ± 13 km h−1 and at a mean height of 104 ± 21 m. The acquired 1469
gamma spectra were then analyzed offline to obtain information on Th, K and U ground
abundances with a time resolution of 10 s, compared approximately to a measurement
every 280 m of flight. The spectra analysis was performed through the application of the full
spectrum analysis (FSA) with non-negative least squares [40] which considers the acquired
spectrum as a result of a composition of the fundamental spectra of each radionuclide
and of the background radiation given by cosmic contribution and intrinsic background
of the instrumentation [37,38]. In this case, the fundamental spectra are reconstructed, at
the corresponding flight altitude, through a Monte Carlo code based on GEANT 4 [41]
for the simulation of the gamma emissions of a radionuclide homogeneously distributed
over an infinite source. Following the method described in [38], the atmospheric 222Rn
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daughters are estimated to produce an additional effect in the acquired gamma spectra,
leading to a potential overestimation of the ground U abundance approximately equal to
1.1 µg g−1, 0.9 µg g−1 and 0.7 µg g−1 in Flight 1, 2 and 3 (Figure 2b), respectively. This
non-constant contribution can be explained by the poor ventilation typical of the study
area which is below the sea level and with a high relative air humidity. Considering this
not negligible bias and the evident lack of secular equilibrium, we decided not to include U
content in this study. The minimum detection abundances are 0.05 × 10−2 g g−1 for K and
0.08 µg g−1 for Th [37]. K and Th abundances maps were obtained applying an ordinary
kriging interpolation to obtain a 723 square mesh grid with a 500 m × 500 m resolution
and coincident with the RER soil texture maps.
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Figure 2. (a) The Radgyro, the aircraft used for the AGRS surveys and (b) paths of Flights 1, 2 and 3,
ranging 184 km, 126 km and 172 km in the Mezzano Lowland, respectively. The distance of the flight
lines is ~600 m for Flights 1 and 3; the smaller line spacing of Flight 2 (~100 m) arises from the spatial
resolution requirements of the photogrammetric survey simultaneously performed.

For the investigation of areas with dimensions comparable to those of the Mezzano
Lowland (∼200 km2), AGRS surveys are more convenient than in situ measurements for
two reasons: (i) the collection and measurement of 1469 soil samples would have required
a huge temporal and economical effort; (ii) the soil samples are in most cases representative
of a very small volume (~10 cm3), while AGRS detects gamma signals emitted by an area
of ~0.2 km2 integrating local variations, which could introduce biases in the soil texture
prediction. The observation scale of AGRS is a good compromise towards an expedient
solution to optimize both time and economic resources.

2.4. Regression Analysis

The linear relations between K and Th abundances and sand, silt and clay soil fractions
are estimated, firstly, with an SLR analysis and, secondly, with a MLR model. A NLML
algorithm was developed for studying more complex relationships. The 723 input data of
the entire dataset are split, through a random (non-stratified) sampling, into a training and
a testing dataset with a ratio of 80:20 (corresponding to 578:145). The linear and non-linear
relations are studied for the training dataset, while the testing dataset is used for validating
and comparing the three prediction models. The absence of bias in data selection, proved
by comparable statistical parameters of the two datasets, demonstrated that the adopted
sampling method permitted having representative sets of the input data.

The SLR model assumes that textural fraction values depend on either K or Th abun-
dance through the equation:

Y [%] = m·a(X) + q, (1)

where Y stands for clay, silt or sand weight fraction, a(X) is the abundance of the radioele-
ment X (in 10−2 g g−1 for K or in µg g−1 for Th), and m and q are the model’s parameters
to be determined. The linear correlation is investigated using the Pearson correlation
coefficient r defined as:

r =
σYa(X)

σYσa(X)
, (2)
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where σYa(X) is the covariance between the soil fraction Y and the radioelement abundance
a(X) and σY, σa(X) are the respective standard deviations.

In MLR the relations between clay, silt, or sand content and both K and Th abundances
are assumed as:

Y[%] = a·a(K)
[
10−2 g g−1

]
+ b·a(Th)

[
µg g−1

]
+ c, (3)

where a, b and c are model parameters that must be determined. The linear dependence
of the textural fraction on K and Th abundances is quantified via the multiple correlation
coefficient R as:

R =

∣∣∣∣∣∣
√√√√1 − ∑N

i=1 e2
i

∑N
i=1
(
Yi − Y

)
∣∣∣∣∣∣, (4)

where N is the number of observations, Yi is the observed value, Y is the average value
of the Yi and ei is the i-th error given by ei = Yi − Ŷi where Ŷi is the predicted value. The
statistical significance of the a, b, and c parameters is assessed by means of a t-test with a
p-value based on the null hypothesis of non-significance in the multi-linear relation.

Going beyond the linear fit of a single radioisotope (K or Th) and clay or sand content,
a NLML algorithm was developed by composing two identical supervised deep neural
networks tuned for predicting clay and sand soil contents, using both K and Th abundances
as input features (dimensionality = 2). The “Adam” optimizer [42] was set by the algorithm
to minimize the mean squared error between the outputs and RER soil texture data (target
labels) over 100 epochs with a fixed learning rate of 0.001. The model is designed using
6 layers (Figure 3): the first (Input layer) is a normalization layer using Keras’ standard
normalization function [43], the following four are fully-connected hidden layers with
16 nodes activated by the rectified linear unit function (ReLU) [44], and the last one (Output
layer) is a linear single-output layer. The hyperparameters adopted (i.e., learning rate,
number of epochs, density and number of hidden layers, optimizer chosen, optimization
parameter and activation function) have been tuned by trial and error to avoid under-
and over-fitting the models. The small intrinsic variability of the clay and sand content
predictions on the testing dataset is reduced by taking the mean values for the outputs
over 100 runs of the algorithm. Finally with the purpose of estimating USDA soil textural
classes, the silt content was calculated as silt [%] = 100 − clay [%] − sand [%].
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  a(K) [10−2 g g−1] a(Th) [μg g−1] Clay [%] Silt [%] 

a(Th) 
[μg g−1] 

m ± δm 5.0 ± 0.1 [10−4 g g−1]    
q ± δq 2.3 ± 0.1 [μg g−1]    

r 0.82    

Figure 3. Deep neural network model diagram for predicting the output (clay or sand weight fraction)
starting from the input features (K and Th abundances). The hidden layers include four dense (fully
connected) layers with 16 nodes activated by the ReLU function.
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Since the three regressions were calculated with 578 data (training dataset), the re-
maining 145 values (testing dataset) are used for investigating the models’ predictive
performance studying the coefficient of determination R2 defined as:

R2 = 1 − ∑N
i=1
(
Yi − Ŷi

)2

∑N
i=1
(
Yi − Y

)2 , (5)

where N, Yi, Ŷi, Y are as in Equation (4).

3. Results

Adopting the data reported in the RER soil texture maps, the mean clay, silt and sand
contents in the Mezzano Lowland are 26 ± 9%, 37 ± 7% and 37 ± 14%, respectively; the
predominant texture class is loam, followed by clay loam and sandy loam. The radiometric
data (training dataset) showed, for K and Th abundances, a low negative skewness (−0.6)
with mean values of a(K) = 0.93 ± 0.14 × 10−2 g g−1 and a(Th) = 6.9 ± 0.9 µg g−1 (Figure 4).
The Pearson correlation coefficient r = 0.82 indicates a strong linear correlation among the
radioelement abundances (Table 1), confirmed also by the low standard deviation of their
ratio (a(Th)/a(K) = 7.52 ± 0.75 × 10−4). Since the silt content has no evident correlation
with K and Th abundances (r = 0.47 and r = 0.48), the linear regression models and their
implications are not considered in the following discussions.
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Table 1. Results of the SLR analysis between textural fractions (clay, silt and sand) and radioele-
ments abundances (a(K) and a(Th)) performed on the training dataset (N = 578). The parameters
(m and q) of the SLR model are reported together with their standard deviations (δm and δq)

(δm =

√
∑N

i=1(Yi−Ŷi)
2[

(N−2)·∑N
i=1(a(X)i−a(X))

2] , δq =

√(
∑N

i=1(Yi−Ŷi)
2

N−2

)
·
(

1
N +

a(X)
2

∑N
i=1(a(X)i−a(X))

2

)
, where N is the

total number of data, Yi is the i-th soil texture fraction value provided by RER, Ŷi is the i-th predicted
soil texture fraction value, a(X)i is the i-th measured abundance of radioelement X and a(X) is the
mean value of the a(X)i) and the Pearson correlation coefficient (r); the highest r values for relations
between soil fraction and radioelement abundance are shown in italic.

a(K) [10−2 g g−1] a(Th) [µg g−1] Clay [%] Silt [%]

a(Th)
[µ g g−1]

m ± δm 5.0 ± 0.1 [10−4 g g−1]
q ± δq 2.3 ± 0.1 [µg g−1]

r 0.82

Clay
[%]

m ± δm 39.9 ± 2.0 [g g−1] 5.4 ± 0.4 [104 g g−1]
q ± δq −11.5 ± 1.9 [%] −11.6 ± 2.5 [%]

r 0.64 0.53

Silt
[%]

m ± δm 22.2 ± 1.7 [g g−1] 3.7 ± 0.3 [104 g g−1] 0.5 ± 0.0 [g g−1]
q ± δq 16.5 ± 1.6 [%] 11.7 ± 2.0 [%] 24.8 ± 0.7 [%]

r 0.47 0.48 0.64

Sand
[%]

m ± δm −62.1 ± 3.2 [g g−1] −9.1 ± 0.6 [104 g g−1] −1.5 ± 0.0 [g g−1] −1.8 ± 0.0 [g g−1]
q ± δq 95.0 ± 3.0 [%] 99.9 ± 3.9 [%] 75.2 ± 0.7 [%] 106.0 ± 1.6 [%]

r −0.62 −0.56 −0.93 −0.88

The clay and sand fractions are plotted as a function of K (Figure 4a,b) and Th (Figure 4c,d)
abundances and are then fitted with an SLR model. The 68% prediction level bands demon-
strate that the obtained predictive models work better with loam and clay loam soils, while
the worst estimations are obtained for values of sand > 60% or of clay > 35%.

The SLR analyses show that the clay content has a moderate positive correlation with
K (r = 0.64) and Th (r = 0.53) abundances (Table 1). The sand content has the opposite trend
with a moderate negative correlation with K (r = −0.62) and Th (r = −0.56) abundances
(Table 1). These results must be attributed to the low capacity of the main constituent
of sand (quartz) to adsorb cations and, therefore, radioelements [23,45]. The findings of
the correlation analysis substantially agree with similar studies performed with smaller
datasets and on different soil types (Table 2). The only exceptions regard Spadoni and
Voltaggio [19], which highlight an absence of correlation between a(K) and clay fraction
(r = 0.05), and Petersen [18], which reported a negative correlation (r = −0.42) between the
two. Authors of the latter study explain this trend as a consequence of “the mobility of [K]
ion due to the small radius compared to that of U and Th” [18] (p. 655), despite stating in
the same paper that the clay content “shows high positive correlation with cation exchange
capacity” [18] (p. 654, Figure 3).

The intercept (q) of the SLR models between sand content and radioelement abun-
dances is compatible at the 2σ level with q = 100%, indicating that a soil with a high sand
content (>95%) has K and Th abundances close to zero.

From the MLR analysis results, the sand and clay fractions appear to be moderately
correlated with the radioelement abundances (R > 0.60), while the silt content has a lower
correlation grade (R = 0.50) (Table 3). The parameter b of the predictive model of the clay
content is compatible with zero, highlighting a negligible contribution of the Th content.
Testing for the statistical significance of the b parameter in the MLR, we found p-values
of 9 × 10−1, 2 × 10−5 and 2 × 10−2, respectively, for clay, silt and sand relations, pointing
towards a non-significance at the 0.01 level for the contribution of Th to the determination
of clay and sand contents.
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Table 2. Comparison of the Pearson correlation coefficient (r) found in this study with the results
of similar surveys for which the mean clay and sand contents of the investigated soils are reported
together with the number of analyzed data.

r

N◦ of Data Clay [%] Sand [%]
Clay
vs.
K

Sand
vs.
K

Clay
vs.
Th

Sand
vs.
Th

This study 578 26 37 0.64 −0.62 0.53 −0.56
Van Der Klooster, et al. [46] * 53 18 / 0.56 / 0.63 /

Mahmood, et al. [47] ** 36 19 63 / / 0.62 −0.51
Spadoni and Voltaggio [19] 21 27 21 0.05 −0.48 0.07 −0.07

Elbaalawy, et al. [48] 16 24 52 0.61 −0.71 / /
Petersen [18] 13 25 36 −0.42 <−0.10 0.53 −0.78

* Values reported for the NMD—salt marsh basin—Mn. A soil series characterized by calcareous soils and similar
to the study area (Table 4 of the reference). ** Values reported using the FSA method for the combined fields.

Table 3. Results of the MLR analyses between textural fractions (clay, silt and sand) and radioelement
abundances (a(K) and a(Th)) performed on the training dataset (N = 578). The parameters (a, b and c)
are reported together with their associated uncertainties (δa, δb and δc) (δa, δb and δc are calculated by

taking the square root of the diagonal elements of σ2
(

XTX
)−1

, where σ2 = 1
(N−p−1) ∑N

i=1
(
yi − Ŷi

)2

is the variance of the errors, N is the number of data, p is the number of independent variables, yi is
the i-th observed value of the dependent variable and ŷi is the i-th prediction of the model, while X is
the matrix of the independent variables at each of the N data points) and the multiple correlation
coefficient, R.

Relation a ± δa
[g g−1]

b ± δb
[104 g g−1]

c ± δc
[%] R

Clay [%] = a × a(K) [10−2 g g−1]
+ b × a(Th) [µg g−1] + c

39.4 ± 3.5 0.1 ± 0.6 −11.7 ± 2.3 0.64

Silt [%] = a × a(K) [10−2 g g−1] +
b × a(Th) [µg g−1] + c

11.6 ± 3.0 2.1 ± 0.5 11.7 ± 2.0 0.50

Sand [%] = a × a(K) [10−2 g g−1]
+ b × a(Th) [µg g−1] + c

−51.0 ± 5.6 −2.2 ± 0.9 100.0 ± 3.7 0.63

The soil textural fractions predicted by the MLR model for the testing dataset clearly
follow a straight line when plotted in the USDA soil textural triangle (Figure 5a), resulting
in more accuracy for the loam and clay loam classes and less reliability for sandy loam and
silty clay loam. The soil textural fractions predicted by the NLML algorithm plotted in the
same diagram (Figure 5b), not being bound to any linear constraint, seem to better adapt
to the scattered RER data; only the silty clay, clay and sandy clay loam classes, which are
associated to only 5% of the testing dataset of RER, do not have any NLML predictions.

The performances of the three approaches (SLR, MLR and NLML) are compared by
means of scatter plots (predicted vs. observed values) and calculation of R2 (Figure 6). The
angular coefficient m of the regression line “Predicted value = m × Observed value” is
close to 1 (0.92 ≤ m ≤ 0.94) for each predictive model. The highest values of R2 (R2 = 0.52
for clay and R2 = 0.49 for sand) are obtained with NLML (Figure 6e,f) highlighting that
the non-linear models perform better compared to the linear ones. At the same time, the
results confirm that the MLR does not introduce any significant improvements in terms of
m and R2 (Figure 6c,d) with respect to SLR (Figure 6a,b).
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Figure 5. USDA soil textural triangle with data extracted from the RER map (145 data, testing dataset)
together with (a) the corresponding values on the basis of soil textural fractions predicted by adopting
MLR models of sand and clay content and (b) the corresponding values obtained on the basis of soil
textural fractions predicted with the NLML algorithm.
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Figure 6. Scatter plot of the observed clay values in the RER soil texture map and predicted values
by (a) the SLR model starting from K abundances, (c) the MLR model and (e) the NLML algorithm.
Scatter plot of the observed sand values in the RER soil texture map and predicted values by
(b) the SLR model starting from K abundances, (d) the MLR model and (f) the NLML algorithm. For
each plot, the equation of the regression line (solid line) is reported together with the coefficient of
determination (R2); the dashed line corresponds to the bisector (Predicted values = Observed values).
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The performances of the linear (SLR and MLR) and non-linear (NLML) models were
investigated by also studying the spatial distribution of the predicted values, building the
predicted maps of the clay and of the sand content, and comparing them with the RER
maps. In the following discussion, the MLR maps are not taken into account given their
almost identical results to SLR; all the considerations made for the SLR model are likewise
valid in the case of MLR.

Adopting the predictive models derived from the SLR analysis:

clay [%] = 39.9·a(K)
[
10−2 g g−1

]
− 11.5, (6)

sand [%] = −62.1·a(K)
[
10−2 g g−1

]
+ 95.0, (7)

the clay and sand content values for each of the 723 meshes are obtained starting from the K
abundances quantified via the AGRS measurements (Figure 7c,d). Note that the predictive
models based on K abundances are preferred over models based on Th abundances due to
the higher values of r. The same maps are obtained by assigning to the 723 meshes the clay
(Figure 7e) and sand (Figure 7f) content values predicted by the NLML algorithm.
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The maps resulting from the SLR and NLML approaches exhibit the same macrostruc-
tures characterized by high values of clay in the north and high values of sand in the
central-SE area of the RER soil texture maps (Figure 7a,b), but show finer details. The
maps of the differences between clay contents predicted by the SLR (Figure 8a) and NLML
(Figure 8b) regression models and those reported by the RER permit the investigation of
the spatial distribution of the datapoints furthest from the bisector in Figure 6a,e. The
high clay content in the northern belt, associated with the negative anomalies in Figure 8,
corresponds to the Eridano’s riverbed reported in Figure 9 where the hydrographic network
of the historical map of the VI-IV century BCE (Figure 1a) was overlapped, respectively,
with the predicted clay content map and the corresponding RER map. The SW-NE narrow-
shaped features with high values of clay content (low sand content), associated with the
positive anomalies in Figure 8 and coincident with the riverbed of the secondary rivers
Proto-Idice and Proto-Valreno, do not emerge in the RER soil texture map, but are evident
in the predicted map (Figure 9b).
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Figure 8. (a) Map of the difference between clay values predicted by the SLR model starting from K
abundances and clay values reported in the RER soil textural map (ClaySLR–ClayRER); (b) map of the
differences between clay values predicted by the NLML model and clay values reported in the RER
soil textural map (ClayNLML–ClayRER). Cartographic reference system: WGS 84, UTM Zone 32N.

It is worth noticing that the hydrographic setting of the historical map used for the
comparison is supported by the geo-morphological features map provided by the RER
Geological Service, which also highlights that the areas with low clay content (and high
sand content) correspond to the traces of sand dunes (Figure 9).

The correspondence between high predicted clay content areas and paleo-channel
traces could be easily explained by the abandonment process of their former riverbeds, in
this case, attributable to avulsion phenomena (upstream shifting of a channel in correspon-
dence with bifurcation). Such processes are associated with fining upward sedimentation,
unlike artificial fluvial diversions that leave in the abandoned riverbeds coarse sediments
compatible with the high energy of the fluvial currents. In the case of avulsion, abandoning
channels experience an extended transitional stage with shallowing and narrowing, with
the grain size of deposits gradually fining upwards from sand to silt, and a final stage of full
disconnection (Toonen, Kleinhans and Cohen [11]). This eventually completes the sequence
with sediments representing the suspended load brought during floods, consisting of much
finer-grained deposits (typically clay). In the Mezzano Lowland, the preservation of these
sedimentary sequences was favored by the spread of salt marshes, which left the area
undisturbed after the abandonment of the Eridano, Idice and Valreno.
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Figure 9. Hydrographic network of the VI-IV century BCE [30] superimposed on (a) the clay content
map provided by RER and (b) the clay content map as predicted by the NLML model. (c) The
geo-morphological feature map provided by RER. Cartographic reference system: WGS 84, UTM
Zone 32N.

4. Conclusions

In this work, we investigated the correlations between K and Th abundances obtained
from the geo-localized spectra acquired via AGRS and soil texture data extracted from the
RER soil texture map of the Mezzano Lowland area. The analysis was performed with three
different approaches (SLR—simple linear regression, MLR—multiple linear regression and
NLML—non-linear machine learning) using 80% of the data for model training and 20% of
the data for performance testing. The obtained results in terms of soil texture maps were
interpreted using historical information on the hydrographic evolution of the area. We
summarize here the main outcomes of this study.

• The results of the SLR analysis highlighted moderate negative correlations between
sand and K abundances (r = −0.62) and between sand and Th abundances (r = −0.56).
The intercepts of both regression lines are compatible at the 2σ level with a soil
sand content of 100%, corresponding to null K and Th abundances. These results
corroborate the presence of sandy soils with low radioactivity and high silica content
in the Mezzano Lowland.

• The high cation exchange capacity of clay minerals is confirmed by a positive corre-
lation between clay and K (Th) abundances with r = 0.64 (r = 0.53). This trend, also
supported by the MLR model, permitted the production of a map of the clay content
derived from radiometric data to be compared with the RER soil texture map.
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• The models based on the NLML algorithm show the best performances, in terms of
R2, in the prediction of clay and sand soil content from K and Th abundances.

• Because of the high density of airborne data, the investigation of the spatial distribu-
tions of the clay values differences between models’ predictions and RER observations
permitted uncovering detailed geo-morphological features, which are not reported in
the RER soil texture map. The clay maps derived from both SLR and NLML models
highlight areas with high clay content attributable to the paleo-channels known as
Idice, Valreno and Eridano, which crossed the Mezzano Lowland for approximately a
thousand years in the Etruscan and Roman periods.

In this study, we proved that the AGRS performances for discriminating against dif-
ferent texture classes could be significantly improved by implementing machine learning
techniques by exploiting the availability of large amounts of soil texture data to train non-
linear algorithms. It is worth highlighting that AGRS data can be affected by systematic un-
certainties coming from spectral noise produced by atmospheric radon [49,50], calibration
processes [51,52] and soil water content [53]. Since these systematic uncertainties are very
sensitive to varying environmental conditions, an uncritical application of the correlation
models must be made cautiously. The greater the accuracy of the gamma measurements,
the greater the reliability of the AGRS method in retrieving soil texture information.

Soil digital mapping plays a decisive role in the sustainable management of soil, a non-
renewable resource increasingly affected by the consequences of climate change. From this
perspective, the promising predictions given by the proposed methodology can support
paleo-hydrography studies, the rational planning of agricultural practices, and the analysis
of soil degradation processes.
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