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1. Introduction 

Since 2007 Borexino [1] has measured the fluxes of low-energy

neutrinos, most notably those emitted in nuclear fusion reactions

and β decays along the pp -chain in the Sun. Borexino was the first

experiment to make spectroscopic and real-time measurements of

solar neutrinos with energy < 3 MeV, i.e. below the endpoint en-

ergy of long-lived, natural β radioactivity: 40 K and the 232 Th and
238 U decay chains. The detector has made first direct observations

of 7 Be [2] , pep [3] , and pp [4] solar neutrinos, lowered the de-

tection threshold for 8 B solar neutrinos [5] . These measurements

deepen our understanding of Solar Standard Model [6] and sup-

port the MSW-LMA mechanism of neutrino oscillations. In addition

Borexino has detected anti-neutrinos from the Earth and distant

nuclear reactors [7] and has set a new upper limit for a hypothet-

ical solar anti-neutrinos flux [8] . 

Borexino, located deep underground (3,800 m water equiv-

alent) in Hall C of the Gran Sasso Laboratory (Italy), measures

solar neutrinos via their interactions with a target of 278 ton

organic liquid scintillator. The ultrapure liquid scintillator (pseu-

documene (1,2,4-trimethylbenzene (PC)) solvent with 1.5 g/l 2,5-

diphenyloxazole (PPO) scintillating solute) is contained inside a

thin transparent spherical nylon vessel of 8.5 m diameter. So-

lar neutrinos are detected by measuring the energy and posi-

tion of electrons scattered by neutrino-electron elastic interac-

tions. The scintillator promptly converts the kinetic energy of elec-

trons by emitting photons, which are detected and converted into

electronic signals (photoelectrons (p.e.)) by 2212 photomultipliers

(PMT) mounted on a concentric 13.7 m-diameter stainless steel

sphere (SSS). 

The volume between the nylon vessel and the SSS is filled with

889 ton of ultra pure, non scintillating fluid and acts as a radia-

tion shield for external gamma rays and neutrons. A second, larger

nylon sphere (11.5 m diameter) prevents radon and other radioac-

tive contaminants from the PMTs and SSS from diffusing into the

central sensitive volume of the detector. The SSS is immersed in a

2100 ton water Čerenkov detector meant to detect residual cosmic

muons [9] . 

Radioactive decays within the scintillator form a background

that can mimic neutrino signals. During detector design and con-

struction, a significant effort was made to minimize the radioac-

tive contamination of the scintillator and of all detector compo-

nents in contact with it. A record low scintillator contamination of

< 10 −18 g/g was achieved for 238 U and 

232 Th. 

The identification of different com ponents of the solar neutrino

flux relies on fitting the recorded energy spectrum with a combi-

nation of identified radioactive background components and of so-

lar neutrino-induced electron recoil spectra. The neutrino-induced

spectra are derived from Standard Solar Model neutrino energy

distributions (SSM [10] ) and include the effect of neutrino oscil-

lation. The solar origin of the detected neutrinos is determined by

the identification of crisp spectral signatures as predicted by the
e seasonal modulation of the 7 Be neutrino interaction rate with the Borex-

azionali del Gran Sasso in Italy. The period, amplitude, and phase of the

 signal are consistent with its solar origin, and the absence of an annual

9% C.L. The data are analyzed using three methods: the analytical fit to

nd the Empirical Mode Decomposition techniques, which all yield results

© 2017 Elsevier B.V. All rights reserved.

SM. Exemplary is the Compton-like energy spectrum of electrons

cattered by the mono-energetic 7 Be solar neutrinos. Remarkably,

he 7 Be-induced Compton ‘shoulder’ was clearly identified with

ust one month of data [11] , thanks to the extremely low radioac-

ive background in the scintillator. 

In contrast with water Čerenkov detectors, Borexino cannot

etain directional information of individual events due to the

sotropic emission of scintillation light; direct solar imaging with

eutrinos is thus not possible. The eccentricity of the Earth’s or-

it, however, induces a modulation of the detected solar neutrino

nteraction rate proportional in amplitude to the solid angle sub-

ended by the Earth with respect to the Sun (neglecting neutrino

scillation effects). The effect appears as a 6.7% peak-to-peak sea-

onal amplitude modulation, with a maximum at the perihelion.

vidence for such a yearly modulation of the 7 Be signal was al-

eady observed with Borexino Phase-I data (collected from May

007 to May 2010) [12] . The period and phase were found to be

onsistent with a solar origin of the signal. 

Yearly modulation searches have also been carried out by other

olar neutrino experiments: in particular SNO [13] and Super-

amiokande [14] found evidence for an annual flux modulation in

heir time series datasets. Similar analyses were also performed

iming to search for time-dependencies of solar neutrino rates

ith periods other than one year. An apparent anti-correlation

ith solar cycles was suggested by data from the Homestake

hlorine experiment [15] , and claims of such a periodicity were

eported for Super-Kamiokande-I [16–18] . The SNO [13] , Super-

amiokande [19] , and Gallex/GNO [20] collaborations looked for

hese time variations, but found none in their data. 

Here we report an improved measurement of time periodicities

f the 7 Be solar neutrino rate based on 4 years of Borexino Phase-II

ata, acquired between December 2011 and December 2015. Borex-

no Phase-II began immediately after an extensive period of scintil-

ator purification. Borexino Phase-II, in addition to higher statistics,

ower background levels and an improved rejection of alpha-decay

ackground, is characterized by the absence of major scintillator

andling and thus displays a high degree of stability of the de-

ector, crucially important for identifying time dependent signals.

n the Borexino Phase-I analysis we based our annual modulation

earch on the well-established Lomb-Scargle approach as well as

n the more recent Empirical Mode Decomposition (EMD) tech-

ique. The virtue of the latter technique is its sensitivity to tran-

ient modulations embedded in time series, emerging from analyz-

ng data features with more than just standard reference sinusoidal

unctions. 

The analysis reported here analyzes the Borexino Phase-II

ataset, described in Section 2 , by employing both the Lomb-

cargle and an updated version of the EMD techniques. Two in-

ependent sections of this paper describe the methods of each ap-

roach and their respective results ( Section 3.2 and Section 3.3 ).

or completeness, we have also carried out a search of the annual

odulation directly in the time domain, using a straightforward
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nalytical fit ( Section 3.1 ). All analysis methods clearly confirm the

resence of an annual modulation of the 7 Be solar neutrino inter-

ction rate in Borexino and show no signs of other periodic time

ariations. 

. The data set 

The data of Borexino Phase-II are used for this analysis (1456

stronomical days of data). Compared to Borexino Phase-I, back-

round levels have been substantially reduced by an extensive pu-

ification campaign that took place during 2010 and 2011. Of par-

icular importance for this study is the reduction of the 85 Kr and
10 Bi concentrations, both backgrounds in 

7 Be region. Data tak-

ng has seen only occasional, minor interruptions due to detector

aintenance. 

.1. Event selection 

A set of cuts described in [12] has been applied on an event-

y-event basis to remove backgrounds and non physical events.

n particular, muons and spallation events within 300 ms of par-

nt muons, time-correlated events ( 214 Bi- 214 Po), and noise events

re identified and removed. In addition, events featuring vertices

econstructed outside a Fiducial Volume (FV) are rejected. Re-

oil electrons from the elastic scattering of 7 Be- ν ’s are selected

y restricting the analysis to the energy region ∼ 215-715 keV

 115 − 380 N pe ). In this range, the major backgrounds are the α
ecays of 210 Po and the β decays of 210 Bi and 

85 Kr. The 5.3 MeV

’s appear as a peak at ∼ 450 keV (after quenching) in the energy

pectrum (red line in Fig. 1 ). The β ’s define a continuous spectrum

eneath the 7 Be recoil spectrum (blue line in Fig. 1 ). The time sta-

ility of the background was studied to factor out any influence

n the annual modulation search. Two major changes were imple-

ented for this search from that with Borexino Phase-I data and

escribed below: the FV ( Section 2.1.1 ) was redefined and an en-

anced method for the rejection of 210 Po α background was devel-

ped ( Section 2.1.2 ). 

.1.1. Fiducial volume selection 

We define a FV of 98.6 ton by combining a spherical cut of R =
 m radius at the center of the detector with two paraboloidal cuts

t the nylon vessel poles to reject γ -rays from the Inner Vessel

nd-cap support hardware and plumbing. 

The excluded paraboloids have different dimensions to re-

ove the local background. The paraboloids are defined as R (θ ) =
/cos n θ, where θ is the angle with z-axis and d is the dis-

ance from the detector center to the paraboloid vertex. The top
araboloid is defined by d = 250 cm and n = 12 whitch cor-

esponds to an aperture of 54 cm of radius; the bottom one by

 = −240 cm and n = 4 which corresponds to a larger aperture of

1 cm of radius. 

.1.2. 210 Po rejection 
210 Po in the scintillator constitutes a background for the search

f time-varying signals because of its decay half-life of 138 days.

n general α-backgrounds and β-events in a liquid scintillator can

e efficiently separated exploiting the largely different shapes of

he scintillation pulses [1] . A novel pulse-shape method based on

ultiLayer Perceptron (MLP) machine learning algorithm was ap-

lied to distinguish between the scintillation pulses of α and β
articles with high efficiency. This multivariate method uses a neu-

al network based on 13 α/ β discriminating input variables, that

re computed for each event from the time distribution of recon-

tructed PMT hits. Clean samples of α and β events were obtained

rom the radon daughters 214 Po and 

214 Bi to train the neural net-

ork. The resulting mlp parameter assumes values mostly between

 ( α) and 1 ( β). Fig. 2 shows the distributions of the mlp parame-

ers for the 214 Po and 

214 Bi event samples. 

The MLP provides excellent α − β discrimination: with the mlp

arameter threshold set at 0.9 to retain β ’s, the α rejection ef-

ciency is > 99.98% for 214 Po candidate events (7.7 MeV). The

iscrimination technique is based upon scintillation pulse shape,

herefore we expect a reduced performance for the lower energy
10 Po α’s (5.3 MeV) due to lower photoelectron statistics. In this

ase, for a clean β-like electron-recoil sample, we select events

ith mlp > 0.98. Fig. 1 shows the energy spectrum with and with-

ut α subtraction (blue and red lines). The small residual 210 Po

vents and the unaffected β spectrum illustrate the efficacy of the

iscrimination. 

.2. Residual background 

There are two main sources of background for this analysis: the

esidual 210 Po activity, and the stability of 210 Bi and 

85 Kr β-decays

n the FV. 

.2.1. Residual 210 Po 

At the beginning of Borexino Phase-II (December 2011), the

ount rate of 210 Po was ∼ 140 0 cpd/10 0 ton. Estimating an mlp

− β efficiency of � 99%, the residual α contamination of the

spectrum is R α ∼ 14 cpd/100 ton, comparable to an average

count rate ( ν-signal and background) R β ∼ 40 cpd/100 ton dis-

ributed over the entire analysis energy region. We estimated the

fficiency of the MLP cut by looking for any exponentially decaying
10 Po residual still present in the dataset. The residual amount of
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t  
R α has been subtracted for a given mlp cut in each time bin R ( t ):

R β (t) = R (t) − ξmlp · R α(t) , (1)

where ξmlp is the ‘inefficiency’ parameter. 

For ξmlp = 1% the exponential component due to the residual

alphas become negligible in the overall time series of the dataset,

leaving the remaining β ’s rates with a constant average value in

time. 

2.2.2. Background stability 

The β-decays of 210 Bi and 

85 Kr cannot be distinguished from re-

coil electrons of the same energies induced by neutrinos. To study

the stability of the background rate over time, we compared the

spectral fits to the data divided in short periods. The fit procedure

is the same as in the 7 Be analysis [12] . No appreciable variation of

the background rate is observed within uncertainties. 

2.3. Detector stability 

The stability of the detector response also needs to be char-

acterized, in particular of energy and position reconstruction and

fiducial mass. 

2.3.1. Energy and position reconstruction 

The stability of the energy scale over time was checked by com-

paring the number of events in the selected energy window and in

the FV with those expected by Monte Carlo. A detailed simulation

that includes the run per run detector performance is used. The

stability of the energy scale over the period of interest was proven

to be better than 1%, adequate for our purposes. 

2.3.2. Fiducial mass 

The liquid scintillator density varies with temperature as: ρPC =
((0 . 89179 ± 0 . 0 0 0 03) − (8 . 015 ± 0 . 009)10 −4 × T ) g/cm 

3 , where T

is the temperature in degrees Celsius [12] . The temperature is

monitored at various positions inside the detector. The volume

closest to the IV where temperature is recorded is the concentric

Outer Buffer, where the thermal stability is measured to be bet-

ter than 1 °C. In the FV, the maximum scintillator mass excursion

corresponding to temperature variations is 0.1 ton, ∼ 0.1% of the

FV mass. A Lomb-Scargle analysis ( Section 3.2 ) on the temperature

data was performed. The largest amplitude corresponded to a fre-

quency of ∼ 0.6 year −1 , reflecting a significant real trend which

anyhow cannot mimic the annual modulation. 

3. Modulation analysis 

We have implemented three alternative analysis approaches to

identify the seasonal modulation. The first is a simple fit to the

data in the time domain ( Section 3.1 ). The second is the Lomb-

Scargle method ( Section 3.2 ) [21,22] , an extension of the Fourier

Transform approach. The third method is the Empirical Mode de-

composition (EMD) ( Section 3.3 ) [23] . 

For each approach we define a set of time bins of equal length

t k and their corresponding event rate R ( t k ), obtained as the ratio

of the number of selected events and the corrected life time (sub-

tracted of the muon veto dead time and any down-time between

consecutive runs). 

The time bins are too short to allow extracting a value of the
7 Be neutrino interaction rate via a spectral fit. We use the raw β-

event rate instead, which include background contributions. 
.1. Fit to the event rate 

Due to Earth’s orbital eccentricity (ε = 0 . 0167) , the total count

ate is expected to vary as 

 (t) = R 0 + R 

[ 
1 + ε cos 

2 π

T 
( t − φ) 

] 2 
(2)

here T is the period (one year), φ is the phase relative to the

erihelion, R is the average neutrino interaction rate and R 0 is the

ime independent background rate. This formalism is consistent

ith the MSW solution in which are no additional time modula-

ions, at the 7 Be energies [24] . 

In this approach, the event rate as a function of the time is

t with the function defined in Eq. (2) . Fig. 3 shows the folded,

onthly event rate relative to the average rate measured in Borex-

no, with t = 0 , 365 representing perihelia. Data from the same

onths in successive years are added into the same bin. Having

ormalized to 1 the overall mean value, the data are compared

ith Eq. (2) and show good agreement with a yearly modulation

ith the expected amplitude and phase. The no modulation hy-

othesis is excluded at 3.91 σ (99.99% C.L.) by comparing the χ2 

btained with and without an annual periodicity. 

To extract the modulation parameters, we perform a χ2 fit of

he data with 30.43-day bins, without folding multiple years on

op of each other. Fig. 4 shows the event rate (in cpd/100 ton)

long with the best fit. From [2] , the expected neutrino average

ate in this energy range is ∼ 32 cpd/100 ton. The fit returns

n average neutrino rate of R = 33 ± 3 (cpd/100 ton), within 1 σ
f the expected one ( χ2 /ndof = 0 . 68 , ndof = 42 ). The best-fit ec-

entricity is ε = 0 . 0174 ± 0 . 0045 , which corresponds to an ampli-

ude of the modulation of (7.1 ± 1.9)%, and the best-fit period is

 = 367 ± 10 days. Both values are in agreement with the expected

alues of 6.7% and of T = 365 . 25 days. The fit returns a phase of

= −18 ± 24 days. The robustness of the fit has been studied by

arying the bin size between 7 and 30 days, by shifting the en-

rgy range for selected events, and with and without α − β mlp

nefficiency. Fit results are found not to vary greatly and are all in

greement with the expected modulation due to the Earth’s orbit

ccentricity. The resulting systematic uncertainty on the eccentric-

ty is 10%. 

.2. The Lomb-Scargle method 

The second approach uses the Lomb-Scargle method. This ex-

ension of the Fourier Transform is well suited for our condi-
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the Eq. (2) . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 5. Rate of β-like events passing selection cuts with 7-day bins. The red line 

is the result from Lomb-Scargle analysis ( Eq. (4) ). (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 6. Lomb-Scargle periodogram for data shown in Fig. 5 . 
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Fig. 7. Zoom-in of Fig. 6 . The peak P ( f ) (1-year) is identified to be 7.9, as indicated 

by the vertical line. 
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a  
ions since it can treat data sets that are not evenly distributed

n time. In the Lomb-Scargle formalism, the Normalized Spectral

ower Density, P ( f ), also known as the Lomb-Scargle periodogram

nd derived for N data points ( R 1 . . . R j . . . R N ) at specific times t j , is

valuated and plotted for each frequency f as: 

 ( f ) = 

1 

2 σ 2 

{ [
� j (R j − R ) cos ω(t j − τ ) 

]2 

� j cos 2 ω(t j − τ ) 

+ 

[
� j (R j − R ) sin ω(t j − τ ) 

]2 

� j sin 

2 ω(t j − τ ) 

} 

(3) 

 = 

R 1 + R 2 + R 3 + . . . + R N 

N 

= 

1 

N 

N ∑ 

j=1 

R j 

σ 2 = 

1 

N − 1 

N ∑ 

j=1 

(
R j − R 

)2 

tan 2 ω τ = 

∑ 

j sin 2 ω t j ∑ 

j cos 2 ω t j 

here ω = 2 π f . After finding the frequency f 0 corresponding to

he maximum of the Lomb-Scargle Power distribution [22,26] , the

ine wave that best describes the time-series, in the case of a pure

ignal, is: 

 (t) = A cos ω 0 t + B sin ω 0 t (4)

here, for ω 0 = 2 π f 0 and 

 = 

1 

2 σ 2 

[
� j R j cos ω 0 (t j − τ ) 

]2 

� j cos 2 ω 0 (t j − τ ) 

B = 

1 

2 σ 2 

[
� j R j sin ω 0 (t j − τ ) 

]2 

� j sin 

2 ω 0 (t j − τ ) 

The modulation amplitude is the peak-to-peak variation of the

urve resulting from Eq. (4) . 

For this analysis the data are grouped, after selection cuts, into

-day bins as shown in Fig. 5 . The Spectral Power Density P ( f ) is

alculated using the corresponding normalized event rate R ( t k ) and

t is shown in Fig. 6 . 

The maximum of the periodogram is at f = 1 year −1 and corre-

ponds to a P ( f ) value of 7.9. A zoom-in is shown in Fig. 7 . 

Following [25] , we have evaluated the significance of the

argest peak found in the periodogram of our experimental data
et with a toy Monte Carlo simulation assuming a realistic signal-

o-background ratio and a time interval of 4 years. Fig. 8 displays

he P ( f ), at f = 1 year −1 , distribution (red filled area) obtained ap-

lying the Lomb-Scargle analysis to 10 4 simulations of a constant

ate signal corresponding to the null hypothesis (absence of mod-

lation). This distribution is exponential as expected for the power

t a given frequency of the standard Lomb-Scargle periodogram of
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Fig. 8. Detection sensitivity. Distributions of the Lomb-Scargle Power at frequency 

corresponding to a 1 year period for 10 4 simulations of a 6.7% solar neutrino an- 

nual flux modulation with constant background (blue line) and the same number of 

white-noise simulations (background without any signal) (red area). Indicated with 

vertical lines are the sensitivity thresholds of 1 σ (solid), 2 σ (dashed), and 3 σ (dot- 

ted) C.L. above the white noise. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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with respect to the first ones. The IMF-7 (solid black line) is compatible with the 

expected signal from Seasonal Modulation (dashed red line) and the last IMF is the 

trend. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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a pure white noise time series, P rob(P ( f ) > z) = e −z [21,22,26] . In

the plot, the vertical lines mark the 1 σ (solid), 2 σ (dashed) and

3 σ (dotted) sensitivity to the null hypothesis. The blue distribution

is obtained from 10 4 simulations of an expected yearly modulated

signal plus constant backgrounds and its most probable value is

P ( f ) = 9 . 9 with rms of 4. 

The Spectral Power Density P ( f ) of 7.9 for f = 1 year −1 , ob-

tained from the data, is within the range expected from Monte

Carlo and corresponds to > 3.5 σ significance with respect to the

null hypothesis. 

In addition we have estimated via Monte Carlo the significance

of the two 4.5 high peaks in the L-S periodogram. Missing any a-

priori information about the presence of periodicities other than

the annual one, the significance of these two peaks must be eval-

uated as global significance, which takes into account the so called

Look Elsewhere Effect, i.e. the blind search over a frequency range

[26] . Basically, one performs a Monte Carlo evaluation of the dis-

tribution of the highest peak induced by a pure noise time se-

ries over the searched frequency interval. The significance (or p-

value) is computed comparing the obtained distribution with the

Power value of the highest peak detected in the Lomb-Scargle pe-

riodogram of the data. In this way we determined for the two 4.5

high peaks the p-value of 85%. Hence these two peaks are fully

compatible with being pure noise induced fluctuations in the spec-

trum. 

Finally, a sinusoidal function is constructed via Eq. (4) for

f 0 = 1 year −1 and overlaid to the time-binned data in Fig. 5 (red

curve). The peak-to peak amplitude is ∼ 5.7%, slightly less than

that expected from the eccentricity of the Earth’s orbit, because

the Lomb-Scargle method cannot disentangle the background from

neutrino signal. The same analysis using data selected with slightly

different cuts and without applying the rate correction for MLP in-

efficiency (see Section 2.2.1 ), returns consistent results. The result-

ing total uncertainty for the period is 4%, and for the amplitude

7%. No phase information is available with this technique. 

3.3. Empirical mode decomposition 

The third method, the “Empirical Mode Decomposition” (EMD)

[23,30] , has been designed to work with non periodical signal, in

order to extract the main parameters from a time series as instan-

taneous frequency, phase and amplitude. The algorithm does not
ake any assumption about the functional form of the signal, in

ontrast to the Fourier analysis, and can therefore extract any time

ariation embedded in the data set. 

The EMD is a methodology developed to perform time-spectral

nalysis based on a empirical and iterative algorithm called sifting ,

ble to decompose an initial signal in a set of complete, but not

rthogonal, oscillation mode functions called “Intrinsic Mode Func-

ion” or IMF [27] . 

Here we adopt a new technique for the noise assisted method

alled “Complete Ensemble Empirical Mode Decomposition with Adap-

ive Noise” (CEEMDAN) [28] showing a greater efficiency and stabil-

ty on the final results than the EEMD method [12] . The algorithm

s more capable to separate the signals of interest from background

ecause it removes the residual noise present in the final IMFs to-

ether with the spurious oscillation modes [29] . 

.3.1. Standard algorithm 

The sifting algorithm ( Section 3.3 ) requires a large number of

oints for a best performance. To maximize this number we chose

ins of 1 day. As a consequence, statistical fluctuations dominate

he dataset time-series (red points in Fig. 9 ). However, the intrinsic

yadic filter [31] , removes all high frequency components created

y the Poisson statistical noise. 

The intrinsic mode functions, IMFs, are extracted from the orig-

nal function through an iterative procedure: the sifting algorithm.

he basic idea is to interpolate at each step the local maxima and

inima of the initial signal, calculate the mean value of these in-

erpolating functions, and subtract it from the initial signal. The

ame procedure is then repeated on the residual subtracted signal

ntil suitable stopping criteria are satisfied. These are numerical

onditions, which slightly differ in literature according to the ap-

roach followed (see e.g. [23,32] ). They aim at making sure that the

MFs obey two features inherited from harmonic functions: first,

he number of extrema (local maxima and minima) has to match

he number of zero crossing points or differ from it at most by

ne; second, the mean value of each IMF must be zero. 
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Fig. 10. In figure (a), (b) and (c) are shown in grey the 10 0 0 functions collected 

for the IMF7 and in black the relative average for the three different datasets: (a) 

simulated seasonal modulation, (b) simulated constant background and (c) the real 

data set (see Fig. 9 ). The red-dashed line is the expected seasonal modulation. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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The i th IMF obtained by the k -iteration is given by: 

MF i (t) = x i (t) −
k ∑ 

j=1 

m i j (5)

here x i ( t ) is the residual signal when all “i-1” IMFâs have been

ubtracted from the original signal R ( t ), x 0 (t) = R (t) , and the m ij 

re the average function of the max and min envelopes at each j th

teration. Following the results from a detailed simulation, we fixed

he number of sifting iterations to 20. This number guarantees a

ood symmetry of the IMF with respect to its mean value, pre-

erving the dyadic-filter property of the method ( i.e. , each IMF has

n average frequency that is half of the previous one [27] ). Thus

e obtain all i IMFs down to the last one called “trend”, that is a

onotonic IMF. 

The EMD approach features two potential issues: on one hand,

he method is strongly dependent on small changes of the initial

onditions; on the other, mode mixtures could occur for a phys-

cal component present in the data set especially when the ratio

etween signal and noise 1 is low (about S/N = 0 . 2 , in our case). In

rder to account for these problems, a noise-assisted technique has

een adopted. A random white noise signal (dithering) was added

everal times to the data set under study and the average of all the

MFs taken. 

As for the Borexino Phase-I analysis [12] , we repeat the single

xtraction of the IMF 10 0 0 times, adding to the data a white noise

omponent with an average value μwn = 0 . 0 and σwn = 

√ 

N bin ,

here N bin is the rate of the single bin (Poisson’s error). The main

ifference with respect to the Borexino Phase-I analysis is the use

f the noise-assisted approach, called CEEMDAN. 

The final decomposition of our data set is shown in Fig. 9 ,

here the lower frequency components identified by the algorithm

ecome visible in the higher IMFs. The ones shown are the result-

ng IMFs averaged over the 10 0 0 extractions with different regen-

rations of white noise. 

In particular, Fig. 10 c shows the grey band corresponding to

0 0 0 noise regenerated IMF-7 containing the seasonal modulation.

he resulting average function is shown as black solid line, while

he red-dashed curve corresponds to the expected seasonal modu-

ation. 

.3.2. Modulation parameters estimation 

Here we can only provide a short account of the procedures to

alculate the modulation parameters. A more detailed and formal

escription of the numerical calculations and theoretical explana-

ions are reported in [23,33] . 

The frequency and the amplitude values of a periodic function

as the seasonal modulation) are constant in time. We therefore

xpect that in the IMF7 ( Fig. 9 ) where a modulation of 1-year pe-

iod is visible, these parameters will be constant in time, the av-

rage curve peaking on the expected values. Naturally, due to the

umerical procedure with which the “signal” has been obtained,

ome small fluctuations of the frequency and of the amplitude are

xpected. 

The IMF functions extracted by the sifting algorithm are not

ased on an analytical function. Therefore, in order to extract infor-

ation on frequency, phase and amplitude, it is necessary to build

 complex function z ( t ) by means of a Hilbert transform of the ini-

ial signal [23] : 

(t) = a (t) + i b(t) = A (t) e −i θ (t) , (6)
1 In this case noise means the statistical fluctuations of the rate with respect to 

he amplitude of the seasonal modulation signal. 

t  

a  

c  

s  
n which the real part a ( t ) is the IMF and the imaginary part b ( t )

s the Hilbert transform of the real function: 

(t) = 

1 

π
P 

∫ 
t ′ 

a (t ′ ) 
(t − t ′ ) dt ′ (7) 

here P is the Cauchy principal value. In Eq. (6) , A ( t ) is defined as

 (t) = 

√ 

a 2 (t) + b 2 (t) . (8) 

(t) is also called the amplitude modulation function (AM), while

(t) = arctan 

(
b(t) 

a (t) 

)
(9) 

efines the phase of the carrier function or frequency modulation

FM) function. This method provides a function of the phase of

he time that we can use to define the instantaneous frequency (IF)

s simple time derivative of the phase θ ( t ). Unfortunately a direct

alculation of the IF, starting from the signal, gives unphysical re-

ults with negative values for the frequencies. In order to solve this
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Table 1 

Period, eccentricity and phase of the solar neutrino 

seasonal modulation flux. The results from data are 

in agreement with the Monte Carlo results. 

Simulated data Data 

T [year] 0.95 ± 0.02 0.96 ± 0.05 

ε 0.0155 ± 0.0025 0.0168 ± 0.0031 

φ [day] −12 ± 11 14 ± 22 
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Fig. 11. Power spectrum ( 〈 A 2 ( t ) 〉 ) ( Eq. 8 ). The dark-green solid line is the power 

spectrum of the full data set, while the other colored spectra represent the com- 

ponents from the last 4 IMFs. The red solid line is the power spectrum of IMF-7, 

where the seasonal modulation is present. (a) simulated seasonal modulation, (b) 

simulated constant background and (c) the real data set. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 12. Amplitude and phase obtained with the EMD method. The red star indi- 

cates the best-fit results, while the black point the expected values. Confidence 

contours of 1, 2, and 3 σ are indicated with solid lines. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
problem, an additional numerical procedure is required: the “Nor-

malized Hilbert Transform” (NHT) [33] . Performing the NHT we ob-

tain a normalized carrier function over all the time series. Building

the z ( t ) function, we are able to calculate a reliable instantaneous

frequency function with a real physical meaning as follows: 

f (t) = 

d θ (t) 

d t 
. (10)

We calculate the IF f ( t ) and the amplitude A ( t ) for all the IMFs

extracted from each noise regeneration and take the distribution

of their average in time. A Gaussian fit is applied to the resulting

distribution to obtain f (t), A(t) and their respective errors. 

In Fig. 10 we compare IMFs obtained from the real dataset

( Fig. 10 c) with simulated data sets from a toy Monte Carlo

with/without the sinusoidal signal expected for the seasonal mod-

ulation ( Fig. 10 a and b respectively). 

For both real and MC data set, the resulting IMF average shows

a very good agreement with the expected seasonal modulation

function, while in the case of the null hypothesis ( Fig. 10 b) the

amplitudes of the resulting IMFs are substantially smaller while

frequencies and phases are varying randomly. 

A power spectrum is defined based on the average in time of

the square amplitudes ( 〈 A 

2 ( t ) 〉 ) (8) for each frequency ω( t ). Fig. 11

shows the relative power spectra for the simulations with and

without modulation ( Fig. 11 a and b) and the real data set, respec-

tively ( Fig. 11 c). 

The colored histograms are the Power Spectra from the last 4

IMFs, while the dark green are the full spectra of the whole set of

IMFs (full dataset spectrum). 

As expected in the presence of the seasonal modulation signal

( Fig. 11 a and c), we observe a narrow peak centered on the ex-

pected frequency ( f = 1 /T = 2 . 73 × 10 −3 day 
−1 

), while in the case

of the null hypothesis this spectral component remains almost flat,

featuring an amplitude comparable with other background IMFs

that are present at higher frequencies. The power is an order of

magnitude lower than the signal case ( Fig. 11 b). 

Applying Eq. (10) , we compute the average parameters shown

in Table 1 for the simulated and real data. The results are in agree-

ment with the expected seasonal modulation. 

Based on the comparison of the power spectrum and the pa-

rameters resulting from the zero-modulation MC data sets we con-

clude the presence of a seasonal modulation. 

We have calculated a χ2 -map varying both the phase and mod-

ulation amplitude of the sinusoidal function with respect to the

average IMF obtained over the complete 10 0 0 noise regenerations.

The χ2 -contours are displayed in Fig. 12 , where we assumed the

standard deviation of the IMFs from the average curve to equal 1 σ -

uncertainties divided by the number of time bins minus one. 

4. Summary 

Four years of Borexino Phase-II data have been analyzed search-

ing for the expected annual modulation of the 7 Be solar neutrino

interaction rate induced by the eccentricity of the Earth’s orbit

around the Sun. 
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Both the detector and the data have shown remarkable stability

hroughout the entire Phase-II period, allowing for the clear emer-

ence of the annual periodicity of the signal. 

Three analysis methods were employed: an analytical fit to

vent rate, a Lomb-Scargle periodogram and an Empirical Mode

ecomposition analysis. Results obtained with all three methods

re consistent with the presence of an annual modulation of the

etected 

7 Be solar neutrino interaction rate. Amplitude and phase

f the modulation are consistent with that expected from the ec-

entric revolution of the Earth around the Sun, proving the solar

rigin of the low energy neutrinos detected in Borexino. The ab-

ence of an annual modulation is rejected with a 99.99% C.L. The

irect fit to the event rate yields an eccentricity of ε = (1 . 74 ±
 . 45)% , while the Lomb-Scargle method identifies a clear spectral

aximum at the period T = 1 year. The EMD method provides a

owerful and independent confirmation of these results. 
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