

SCUOLA DI DOTTORATO IN SCIENZE DELLA NATURA E DELLE SUE RISORSE CICLO XXVI

NEW GAMMA-RAY SPECTROMETRY METHODS FOR ESTIMATING K, U, TH CONCENTRATIONS IN ROCKS OF THE SARDINIA BATHOLITH

Merita Kaçeli Xhixha

Tutors

Prof. Giacomo Oggiano

Dott. Fabio Mantovani

UNIVERSITÀ DEGLI STUDI DI FERRARA - ex labore fructus -

Scientific motivations of this PhD thesis

- Study of the correlation between the spatial distribution of natural radionuclides (⁴⁰K, ²³⁸U and ²³²Th) and principal geological formations in order to reveal new features in the geological structure of N-E Sardinia
- Realize the first radiometric map of the natural radionuclides concentration in the rocks of N-E Sardinia using advanced geostatistical methods
- Estimate the radiogenic contribution to the local heat flow in the N-E Sardinia
- Study the correlation between SiO₂ content and K, U and Th abundances in the main lithotypes of N-E Sardinia
- Design and realize a portable collimated lightweight gamma-ray spectrometer for refined in-situ measurements
- Calibrate the spectrometer validating the results with data obtained in laboratory with HPGe detectors

Open questions

What is the distribution of K, U and Th in European Variscan?

What is the contribution of radiogenic heat to the Sardinia thermal budget?

How much U, Th and K is in the deep crustal layers in the N-E Sardinia?

Can we characterize the radionuclides content in a outcrop with portable detector?

Geological overview and sampling distribution

γ-ray spectrometry survey

In-situ measurements

The Varsican orogeny of the Corsica-Sardinia belt was formed during *Late Carboniferous* and *Permian* age was followed by magmatic activity and sedimentation.

Study area survey – in average 1 sample for 6 km²:

N-E Sardinia	Geological formations	Area (km²)	In-situ	In lab.
Basement	12	4165	545	167

Gamma-ray detectors used

Rock samples are crushed and left undisturbed for 4 weeks in sealed containers prior to be measured by MCA_Rad system.

In-situ measurements are performed for 5 min acquisition time by placing the Nal(TI) detector on rock outcrops.

- 2 HPGe detectors with rel. eff. of 60% each
- Energy resolution 0.2% at 1.33 MeV (⁶⁰Co)
- Electromechanic cooler ~ -190°C
- Shielding configuration: 10 cm Cu-Pb
- Automatic sample changer: 24 samples

Sample volume: 200 cc Acquisition live time: 1 h

- 1L Nal(TI) detector with cubic shape crystal
- Energy resolution: 5.3 % at 1.33 MeV (⁶⁰Co)
- Environment temperature
- No shielding
- Quick measurement (5 min)
- USB GPS antenna
- USB Temp & Humidity sensor

Radioelement abundances in N-E Sardinia rock lithotypes

Monzogranite in the European Variscan

Granodiorite in the European Variscan

Migmatite in the European Variscan

Granite in the European Variscan

Leucogranite in the European Variscan

Geostatistical analysis: new insights on geological knowledge of N-E Sardinia

Variable	⁴⁰ K (%)	²³⁸ U (µg/g)	²³² Th (µg/g)	
Counts ^a	701	701	701	
Minimum	0.1	0.5	1.5	
Maximum	6.0	17.9	45.3	
Mean	3.8	4.9	18.0	

Ordinary Kriging is a geostatistical estimator that infers the value of the variable in unobserved locations from **input data points**.

$$\gamma(h) = \frac{1}{2N(h)} \sum_{n=1}^{N(h)} [z(x_n) - z(x_n + h)]^2$$

Computation and modeling of **Experimental Semi-Variogram** (ESV) with 8 lags (h) of 4000 m for ⁴⁰K, 10 lags of 2500 m for ²³⁸U and 8 lags of 3000 m for ²³²Th.

E.g. of ESV model for U (µg/g)

monzogranite granodiorite duartzodiorite peralluminous granite

- The main geological structures are confirmed by the map of K (%) abundance.

Leucogranites are relatively homogeneous and they show the highest K abundances.
Evidences of two anomalies of high K abundance give new clues for interpreting the geological map, e.g. presence of alkalirich leucogranites. Monzogranites show relatively high dishomogeneity of K(%) abundance.
The pattern of the distribution of K abundance in Gallura seems to be affected by the presence of dykes spacing from basic (NE) and acid (NW)

- Leucogranites are relatively homogeneous and they show the highest U abundances. There are no evidences of anomalies in the

- U abundances distribution.
- Evidences of relatively high dishomogeneity is shown in the N part.

- Monzogranites show relatively high dishomogeneity of U (μ g/g) abundance. - Again the pattern of the distribution of U abundance in Gallura seems to be affected by the presence of dykes spacing from basic (NE) and acid (NW)

monzogranite

granodiorite

leucogranite

monzogranite granodiorite nigmatite quartzodiorite peralluminous granite

- The main geological structures are confirmed by the map of Th (µg/g) abundance.

 Leucogranites of Buddusò show the highest abundances of Th (µg/g).

- There are no evidences of anomalies for the Th abundances.

- Evidences of relatively high dishomogeneity is shown in the N part. Monzogranites show relatively high dishomogeneity of Th (μg/g) abundance.
Again the pattern of the distribution of Th abundance in Gallura seems to be affected by the presence of dykes spacing from basic (NE) and acid (NW)

How much U, Th and K is in the deep crust?

- Felsic and mafic rocks can be distinguished on the basis of P and S waves velocities
- Ultrasonic velocity measurements of deep crustal rocks provide a link between seismic velocity and lithology.

Figure from Huang Y et al. 2013 – Geochemistry, Geophysics, Geosystems – 2013.

SiO₂ content in Sardinia rock lithotypes

This study based on bibliographic data on elemental composition SiO₂ of the

most representative rocks of the Corsica-Sardinia Batholiths.

	Rock	type	$SiO_2 \pm \sigma$ (wt. %)
The basic classification scheme	Amphibolite	Mafic	47.9 ± 4.1
for igneous rocks on their	Eclogite	(45-52 %)	47.2 ± 2.7
mineralogy	Granodiorite		65.3 ± 4.5
Composition FELSIC INTERMEDIATE MAFIC ULTRAMAFIC Rock types Granite Rhyolite Diorite Andesite Gabbro Basalt Peridotite	Tonalite	Intermediate	58.8 ± 3.0
Volcanic: Rhyolite Dacite Andesite Basalt Komatilte Plutonic: Granite Granodiorite Diorite Gabbro Peridotite	Quarzodiorite	(52-0570)	53.2 ± 2.8
100 Orthoclase	Granite		72.7 ± 1.0
vol% ofvol*0	Leucogranite	Felsic (> 63%)	75.1 ± 1.0
Plagioclase Pyroxene	Monzogranite		73.2 ± 1.6
Muscovite Bolive Olivine	leuco- monzogranito		76.3 ± 1.8
0- 70 65 60 55 50 45 40	Sienogranito		74.7 ± 0.6
W1% SIO2			

The average ($\pm 1 \sigma$ standard deviation) SiO2 (in % wt.) content in the rocks of Sardinia obtained from bibliographic studies.

Correlation between SiO₂ and K, U, Th abundances

- I calculate a linear correlation between K, U and Th abundances and SiO_2 content.
- A good correlation ($r^2 \sim 0.9$) between SiO₂ and K, U and Th abundances is confirmed.

Preliminary study of radiogenic heat generation

Specific heat power (a) generated from U and Th decay chains and ⁴⁰K decay

Decay	Natural isotopic abundance	a (W/kg)
${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + e^- + \overline{\nu} $ (89%)	1.17×10 ⁻⁴	2.55×10 ⁻⁹
${}^{40}\text{K} + \text{e}^{-} \rightarrow {}^{40}\text{Ar} + \nu \ (11\%)$	1.17×10 ⁻⁴	0.78×10 ⁻⁹
	total K	0.33×10 ⁻⁹
$^{238}U \rightarrow ^{206}Pb + 8 ^{4}He + 6e^{-} + 6 \overline{\nu}$	0.9927	9.45 ×10⁻⁵
$^{235}U \rightarrow ^{207}Pb + 7 ^{4}He + 4e^{-} + 4 \overline{\nu}$	0.0072	0.40 ×10 ⁻⁵
	9.85×10⁻⁵	
232 Th $\rightarrow ^{208}$ Pb + 6 4 He + 4e ⁻ + 4 $\overline{\nu}$	1.0000	2.64 ×10 ⁻⁵

The **radiogenic heat production rate (A)** generated by rock types can be calculated as:

$$A(\mu W/m^3) = \rho(9.85C_U + 2.64C_{Th} + 3.33C_K) \times 10^{-5}$$

 C_U , C_{Th} (in µg/g) and C_K (in %) are the abundances of U, Th and ⁴⁰K ρ is the rock density (in kg/m³).

Heat production rate A (µW/m³)

Rock-type	No.	K (%)	U (µg/g)	Th (µg/g)	ρ (kg/m³)	Α (μW/m³)
monzogranite	446	4.02 ± 0.60	4.85 +2.40 -1.62	18.70 +7.11 -5.17	2750	3.12 ^{+0.83} -0.63
granodiorite	87	2.92 ± 0.87	2.97 +1.10 -0.81	12.41 ± 4.16	2750	2.51 + ^{0.71} -0.55
migmatite	25	3.42 ± 0.60	4.55 +1.40 -1.07	13.10 ± 4.76	2750	2.52 ^{+0.51} -0.46
granite	21	3.77 ± 0.94	4.18 +4.08 -2.07	16.13 ± 7.07	2750	2.73 ^{+1.16} -0.81
leucogranite	16	4.09 ± 0.74	4.24 +4.17	19.99 ± 8.67	2750	3.07 +1.24 -0.91
leuco-monzogranite	16	4.43 ± 0.50	7.37 ± 2.74	23.09 ± 8.31	2750	4.08 + ^{0.97} -0.95
orthogneiss	13	3.31 +0.93 -0.73	4.40 +2.42 -1.56	12.78 +5.96 -4.02	2750	2.51 ^{+0.77} -0.56
amphibolite	12	1.56 ± 0.70	2.11 ± 0.71	8.01 +2.90 -2.14	3300	1.57 +0.34 -0.32
eclogite	11	0.22 +0.27 -0.12	0.31 +0.34 -0.16	0.37 +1.78 -0.31	3300	0.20 +0.22 -0.09
sienogranite	11	4.52 ± 0.51	5.58 +4.27 -2.40	26.31 ± 5.46	2750	3.87 ^{+1.20} -0.78
alcaline-granite	10	3.96 ± 0.19	4.16 ± 1.33	19.85 +5.19 -4.16	2750	2.95 ^{+0.52} -0.48

A geophysical model is built on the base of seismic data, which constrain the thickness of Upper Crust.

Preliminary study of radiogenic heat generation in UC

In a first approximation, we calculated the surface heat flow rate generated from the upper crust due to the presence of the isotope of ⁴⁰K, U and Th assuming a constant thickness: $H_{rad} (mW / m^2) = A \times h$

The surface heat production rate varies between 5.4 \pm 2.5 mW/m² (quarzodiorite) to 18.4 \pm 6.8 mW/m² (leucogranite) with an average of 14.9 \pm 5.6 mW/m² (upper crust only).

Similar studies in this are performed in Corsica indicate that the heat conducted through the whole crust from the underlying mantle is on average is 33 mW/m² (M. Verdoya et al.1998.Tectonophysics.1998)

PART II

A new portable instrument for detailed in-situ gamma-ray survey

Scientific and technological motivations

Desired features for a customized instument

- In-situ accurate identification and quantification of radionuclides
- Portable lightweight collimated instrument
- Quick response measurement on few cm²
 field of view

APPLICATIONS:

Natural radioactivity survey (e.g. decorative stones quarries)

Geophysical survey (e.g identification of uranium and thorium ore veins)

Homeland security (e.g. orphan source identification)

A new portable instrument: Cava-Rad System

PARAMETERS:

Physical parameters

Dimensions (L 43.0 cm x H 27.0 cm x W 13.5 cm) Weight 8.0 kg Environmental parameters Temperature -10 to +50 °C Humidity 85%

Gamma-ray detector NaI(Tl) scintillation detector of 0.3 L volume Energy resolution 7.3 % at 662 keV (¹³⁷Cs) 5.2 % at 1172 and 1332 keV (⁶⁰Co) Physical parameters Dimensions (L 7.62 cm x H 7.62 cm x W 7.62 cm)

Collimation configuration

Weight 2.0 kg

Lead plate **Physical parameters** Dimensions (L 9.0 cm x H 9.0 cm x W 3.0 cm) Weight 3.0 kg

HOW DOES IT WORK?

Cava-rad system uses the "lead plate" method in order to obtain the collimation effect and perform measurements on a restricted area

Typical Cava-Rad spectra

Calibration of Cava-Rad system

The radioactivity content of reference sites used for calibration of Cava_Rad is measured by HPGe

Cal C

Site	Location	Natural pad for	
K2	Galzignano terme	⁴⁰ K	12
K4	Recoaro	^{40}K	
U1	Piovene Rocchette	$^{238}\mathrm{U}$	
U3	Arsiero	$^{238}\mathrm{U}$	
Th1	Castelvecchio (Altissimo)	232 Th	
Th4	Corbara (Schio)	$^{232}\mathrm{Th}$	
Cs1	Monte Novegno (Schio)	^{137}Cs	
H1	Galzignano terme	High conc. of all	0
H2	Galzignano terme	High conc. of all	CBG

Full Spectrum Analysis with Non Negative Least Squares constraints

$$\chi^{2} = \frac{1}{n-5} \sum_{i=1}^{n} \left[N(i) - \sum_{k=1}^{4} C_{k} S_{k}(i) - BG(i) \right]^{2} \frac{1}{N(i)}$$

- N(i) counts in the channel *i*,
- C_k concentration of the element k,
- $S_k(i)$ associated counts to fundamental spectrum of the element k in the channel i,
- *BG(i)* counts in the channel *i* due to the background.

Cava-Rad System: Sensitivity Calibration

For each site we subtract the energy calibrated spectra, PbOut – PbIn and use the difference spectra as input for the FSA-NNLS algorithm in order to obtain the sensitivity spectra of the differences

Standard spectra of Cava-Rad system

Quality of reconstructed spectrum

Validation of Cava-Rad results

Monti Vulsini (south Tuscany)

Deposits of different piroclastic rocks due to volcanic activity (~300.000 years ago). High spatial variability of radionuclides abundances.

Euganean Hills (Veneto)

Homogeneous outcrops of acid effusive rocks.

Homogeneity in the field of view

In-situ:

PbOut and PbIn measurementsAcquisition time: 5 or 10 minutes

In-laboratory:

•Sample collection, under the detector

Analysis in laboratory (MCA_Rad)

Correlation between in-situ and laboratory measurements

Radionuclide	m±σ
⁴⁰ K (%)	0.92 ± 0.08
²³⁸ U (µg/g)	0.82 ± 0.17
²³² Th (µg/g)	0.67 ± 0.10

Discussion and conclusions

The N-E Sardinia was **investigated with 545 in-situ** measurement using a portable gamma-ray spectrometer **Nal(TI)** and by collecting **167 rock samples** and measuring them in the laboratory using highresolution gamma-ray spectrometer **(HPGe)**.

Statistical analysis of the data confirmed that K and Th generally show a Gaussian distribution as U show the log-normal distribution.

This study shows that the **concentrations** of 40 K, U e Th in N-E Sardinia batholite are **comparable** with the values obtained in the European Varsican Batholiths and on average higher than typical concentrations (2.32 % K, 2,7 µg/g U e 10,5 µg/g Th) for the upper continental crust

The concentrations of K, U and Th show an increasing tendency from passing from mafic to intermediate to felsic rocks.

Discussion and conclusions

Radiometric maps of K, U and Th concentrations are built using kriging interpolator.

The **radiogenic heat production** rate for various types of rock in the N-E Sardinia Batholith varies from $0,20 \, {}^{+0,22}_{-0,09} \, \mu$ W/m³ (eclogite) di 4.87 ± 1.00 μ W/m³ (Monzo-sienogranite). These results are comparable with other study of Europian Varsican Batholith.

In-situ gamma-ray spectrometry with scintillation Nal(TI) detectors is widely used for assessing natural radionuclides **under homogeneous** spatial variability.

Cava_Rad is **calibrated** with the best approach and a set of **standard spectra** is included in the software ready to use in-situ measurements.

The Cava-Rad system was found to be a quick and practical instrument when applied on geological sites with particular **spatial variability.**

Scientific Publications

1.E. Guastaldi, M. Baldoncini, G.P. Bezzon, C. Broggini, G.P. Buso, A. Caciolli, L. Carmignani, I. Callegari, T. Colonna, K. Dule, G. Fiorentini, **M. Kaçeli Xhixha**, F. Mantovani, G. Massa, R. Menegazzo, L. Mou, C. Rossi Alvarez, V. Strati, G. Xhixha, A. Zanon. *A multivariate spatial interpolation of airborne γ-ray data using the geological constraints.* **Remote Sensing of Environment (2013)**. Doi: <u>http://dx.doi.org/10.1016/j.rse.2013.05.027</u>

2. I. Callegari, G.P. Bezzon, C. Broggini, G.P. Buso, A. Caciolli, L. Carmignani, T. Colonna, G. Fiorentini, E. Guastaldi, **M. Kaçeli Xhixha**, F. Mantovani, G. Massa, R. Menegazzo, L. Mou, A. Pirro, C. Rossi Alvarez, V. Strati, G. Xhixha, A. Zanon. *Total natural radioactivity map of Tuscany (Italy).* Journal of Maps (2013). Doi: <u>http://dx.doi.org/10.1080/17445647.2013.802999</u>

3. A. Puccini, G. Xhixha, S. Cuccuru, G. Oggiano, **M. Kaçeli Xhixha**, F. Mantovani, C. Rossi Alvarez, L. Casini. *Radiological characterization of granitoid outcrops and dimension stones of the Variscan Corsica-Sardinia Batholith.* **Environmental Earth Sciences (2013)**. Doi: <u>http://dx.doi.org/10.1007/s12665-013-2442-8</u>

4. G. Xhixha, G.P. Bezzon, C. Broggini, G.P. Buso, A. Caciolli, I. Callegari, S. De Bianchi, G. Fiorentini, E. Guastaldi, F. Mantovani, G. Massa, R. Menegazzo, L Mou, A. Pasquini, C. Rossi Alvarez, M. Shyti, **M. Kaçeli Xhixha**. *The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization*. **Journal of Radioanalytical and Nuclear Chemistry (2013)** 295:445–457. Doi: <u>http://dx.doi.org/10.1007/s10967-012-1791-1</u>

5. V. Strati, M. Baldoncini, G. P Bezzon, C. Broggini, G.P Buso, A. Caciolli, I. Callegari, L. Carmignani, T. Colonna, G. Fiorentini, E. Guastaldi, **M. Kaçeli Xhixha**, F. Mantovani, R. Menegazzo, L. Mou, C. Rossi Alvarez, G. Xhixha, A. Zanon. Total natural radioactivity map of Veneto (Italy). **Journal of Maps (2014). Submitted**

6. F. Cfarku, G. Xhixha, E. Bylyku, P. Zdruli, F. Mantovani, F. Përpunja, I. Callegari, E. Guastaldi, **M. Xhixha Kaçeli**, H. Thoma. A preliminary study of gross alpha/beta activity concentrations in drinking waters in some Albanian cities. Journal of Radioanalytical and Nuclear Chemistry (2014). Submitted

14.02.2014 Sassari